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Abstract

We discuss two quantum analogues of the Fisher information, the symmetric
logarithmic derivative Fisher information and Kubo—Mori—Bogoljubov Fisher
information from a large deviation viewpoint of quantum estimation and prove
that the former gives the true bound and the latter gives the bound of consistent
superefficient estimators. As another comparison, it is shown that the difference
between them is characterized by the change of the order of limits.

PACS numbers: 03.67.—a, 02.50.Tt

1. Introduction

Fisher information plays a central role in statistical inference, but also coincides with a natural
inner product in a distribution family. It is defined as

dpg(w)

o (1)
for a probability distribution family {py|0 € ® C R} with a probability space 2. However,
the quantum version of Fisher information cannot be uniquely determined. In general, there
is a serious arbitrariness concerning the order among non-commutative observables in the
quantization of products of several variables. The problem of the arbitrarity of the quantum
version of Fisher information is caused by the same reason. The geometrical properties of its
quantum analogues have been discussed by many authors [ 1-4].

One quantum analogue is the Kubo—Mori—Bogoljubov (KMB) Fisher information .J o
defined by

Jy = / @pe@ do  Ip(@)pa(@) =
Q

1 1
; . L dps
Jg = / TI‘,OéL@,Ogl tL@ dr / ,OéLngl tdt = == 2)
0 0 de

for a quantum state family {py € S(H)|0 € O}, where S(H) is the set of density matrices on
‘H and the Hilbert space H corresponds to the physical system of interest [1-4]. As proved

0305-4470/02/367689+39$30.00  © 2002 IOP Publishing Ltd  Printed in the UK 7689


http://stacks.iop.org/ja/35/7689

7690 M Hayashi

in appendix B, it can be characterized as the limit of quantum relative entropy, which plays
an important role in several topics of quantum information theory, for example, quantum
channel coding [5, 6], quantum source coding [7-9] and quantum hypothesis testing [10, 11].
Moreover, as mentioned in section 3, this inner product is closely related to the canonical
correlation of the linear response theory in statistical mechanics [12]. As mentioned in
appendix A, it appears to be the most natural quantum extension from an information-
geometrical viewpoint. Thus, one might expect that it is significant in quantum estimation,
but its estimation-theoretical characterization has not been sufficiently clarified.

Another quantum analogue is the symmetric logarithmic derivative (SLD) Fisher
information

Jo :=TrL}py l(Le,Oe + poLo) = dpe 3)
2 de
where Ly is called the symmetric logarithmic derivative [13]. It is closely related to the
achievable lower bound of mean square error (MSE) not only for the one-parameter case
[13—15], but also for the multi-parameter case [16—18] in quantum estimation. The difference
between the two can be regarded as the difference in the order of the operators, and reflects
the two ways of defining Fisher information for a probability distribution family.

Currently, the former is closely related to the quantum information theory while the latter
is related to the quantum estimation theory. These two inner products have been discussed
from separated contexts only. In this paper, to clarify the difference, we introduce a large
deviation viewpoint of quantum estimation as a unified viewpoint, whose classical version was
initiated by Bahadur [19-21]. This method may not be standard in mathematical statistics, but
seems a suitable setting for a comparison between two quantum analogues from an estimation
viewpoint. This type of comparison was initiated by Nagaoka [22, 23], and is discussed in
further depth in this paper. Such a large deviation evaluation of quantum estimation is closely
related to the exponent of the overflow probability of quantum universal variable-length
coding [24].

This paper is structured as follows: before we state the main results, we summarize the
classical estimation theory including Bahadur’s large deviation theory, which has been done
in section 2. After this summary, we briefly outline the main results in section 3, i.e. the
difference is characterized from three contexts. To simplify the notation, even if we need
the Gauss notation [ ], we omit it when this does not cause confusion. Some proofs are very
complicated and are presented in the appendices.

2. Summary of classical estimation theory

We summarize the relationship between the parameter estimation for the probability
distribution family { py|60 € ® C R} with a probability space €2 and its Fisher information. The
definitions of Fisher information are given not only by (1), but also by the limit of the relative
entropy (Kullback—Leibler divergence) D(p|lq) := fQ(log p(w) —logg(w)) p(w) dw as

.2
Jo := 1im — D(poell po)- @
e—0 €

These two definitions (1) and (4) coincide under some regularity conditions for a family.
Next, we consider a map f from € to ©’. Similar to other information quantities (for
example, Kullback divergence, etc) the inequality

Jo = Jg (&)
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holds, where Jé is the Fisher information of the family {py o f -llo e B). Inequality (5)
is called monotonicity. According to Cencov [25], any information quantity satisfying (5)
coincides with a constant times Fisher information Jj.

For an estimator that is defined as a map from the dataset 2 to the parameter set ©, we
sometimes consider the unbiasedness condition:

/ T (w)py(w)dw =60 VO € ©. (6)
Q

The MSE of any unbiased estimator 7 is evaluated by the following inequality (Cramér—Rao
inequality):

1
/ (T@) - po(@)do > %
Q 0

which follows from the Schwartz inequality w.r.t. the inner product (X,Y) :=
fQ X (w)Y () po(w) dw for variables X, Y. When the number of data @, := (wy, ..., ®,),
which obey the unknown probability py, is sufficiently large, we discuss a sequence {7}
of estimators T, (w,). If {T,} is suitable as a sequence of estimators, we can expect that it
converges to the true parameter € in probability, i.e. it satisfies the weak consistency condition:

lim pp{|T, — 6| > €} =0 Ve >0 VO e®. (8)
n—0o0

Usually, the performance of a sequence {7},} of estimators is measured by the speed of
its convergence. As one criterion, we focus on the speed of the convergence in MSE. If a
sequence {7,,} of estimators satisfies the weak consistency condition (WC) and some regularity
conditions, the asymptotic version of the Cramér—Rao inequality

1
lim n / (To(@n) — 6)° pj (@) do > — ©)
n— 00 Q Jy

holds. If it satisfies only the weak consistency condition, it is possible that it surpasses the
bound of (9) at a specific subset. Such a sequence of estimators is called superefficient. We
can reduce its error to any amount at a specific subset with the measure 0 under the weak
consistency condition (8).

As another criterion, we evaluate the decreasing rate of the tail probability:

-1
BUT,},0,¢€) := lim — log py{IT, — 0] > €}. (10)
n—-oo n

This method was initiated by Bahadur [19-21], and was a much discussed topic among
mathematical statisticians in the 1970s. From the monotonicity of the divergence, we can
prove the inequality

BUT.}, 0, €) < min{D(pgsellpo), D(po-—cllpo)} (11

for any weakly consistent sequence {7,} of estimators. Its proof is essentially given in our
proof of theorem 2. Since it is difficult to analyse B({T,}, 0, €) except in the case of an
exponential family, we focus on another quantity o« ({7, }, 0) := lim._, éiz B{T,},0,¢€). For
an exponential family, see appendix K. Taking the limit € — +0, we obtain the inequality
J,

«(T,).6) < 7. (12)
If T,, is the maximum likelihood estimator (MLE), the equality of (12) holds under some
regularity conditions for the family [21, 26]. This type of discussion is different from the MSE
type of discussion in deriving (12) from only the weak consistency condition. Therefore, there
is no consistent superefficient estimator w.r.t. the large deviation evaluation.
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Indeed, we can relate the above large deviation type of discussion in the estimation to
Stein’s lemma in simple hypothesis testing as follows. In simple hypothesis testing, we decide
whether the null hypothesis should be accepted or rejected from the data @, 1= (o, . .., w,)
which obey an unknown probability. For the decision, we must define an accept region A,
as a subset of Q". If the null hypothesis is p and the alternative is ¢, the first error (though
the true distribution is p, we reject the null hypothesis) probability B; ,(A,) and the second
error (though the true distribution is g, we accept the null hypothesis) probability S, ,(A,) are
given by

ﬁl,n(An) =1~ Pn (An) ﬁZ,n(An) = qn(An)

Regarding the decreasing rate of the second error probability under the constant constraint of
the first error probability, the equation

—1
lim — logmin{ﬁZ,n(An)Iﬁ],n(An) < 6} = D(P”Q) €e>0 (13)

n—-oo n
holds (Stein’s lemma). Inequality (11) can be derived from this lemma. We can regard the
large deviation type of evaluation in the estimation to be the limit of Stein’s lemma in the case
where the null hypothesis is close to the alternative one.

3. Outline of main results

Let us return to the quantum case. In a quantum setting, we focus two quantum analogues
of the Fisher information, the KMB Fisher information J, and the SLD Fisher information
Jy. Indeed, if the state py is non-degenerate, SLD Ly is not uniquely determined. However,
as is proved in appendix C, the SLD Fisher information Jy is uniquely determined, i.e. it is
independent of the choice of the SLD Lg.

On the other hand, according to chapter 7 in Amari and Nagaoka [1], Ly has another form

_ dlogpg
=~
As is proved by using formula (14) in appendix B, the KMB Fisher information J4 can be

characterized as the limit of the quantum relative entropy D(p|lo) := Trp(logp — logo) in
the following way:

Lo (14)

- .2
Jo = 1im — D(pg.ellpo)- (15)
e—0 €

Moreover, in the linear response theory of statistical physics, given an equilibrium state p,
when a variable A fluctuates with a small value §, another variable B also is thought to fluctuate
with a constant times § [12]. Its coefficient is called the canonical correlation and is given by

1
/ Tr py(A — TrpA)p, ' (B — Tr pB) dt. (16)
0

Thus, the KMB Fisher information J, is thought to be more natural from the viewpoint of
statistical physics.

As another quantum analogue, the right logarithmic derivative (RLD) Fisher
information j@

y v v . dpy
Jo :=TrpyLoL} Ly = —
0 poLgLg Polo = o
is known. When py does not commute % and py > 0, the RLD Ly is not self-adjoint.

Since it is not useful in the one-parameter case, we do not discuss it in this paper. Since
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the difference in definitions can be regarded as the difference in the order of operators,
these quantum analogues coincide when all states of the family are commutative with each
other. However, in the general case, they do not coincide and the inequality Jy > Jp
holds, as exemplified in section 4. Concerning some information-geometrical properties, see
appendix A.

In the following, we consider what roles these quantum analogues of Fisher information
play in the parameter estimation for the state family. As is discussed in detail in section 4,
the estimator is described by the pair of positive operator valued measure (POVM) M (which
corresponds to the measurement and is defined in section 4) and the map from the dataset to
the parameter space ®. Similar to the classical case, we can define an unbiased estimator. For
any unbiased estimator £, the SLD Cramér—Rao inequality

V(E) =2 ]ie a7)

holds, where V (E) is the MSE of the estimator .

In an asymptotic setting, as a quantum analogue of the n-i.i.d. condition, we treat the
quantum #n-i.i.d. condition, i.e. we consider the case where the number of systems that are
independently prepared in the same unknown state is sufficiently large, in section 5. In
this case, the measurement is denoted by a POVM M" on the composite system H®" and
the state is described by the density p®". Of course, such POVMs include a POVM that
requires quantum correlations between the respective quantum systems in the measurement
apparatus. Similar to the classical case, for a sequence E = {E"} of estimators, we can define
the weak consistency condition given in (31). In mathematical statistics, the square root n
consistency, local asymptotic minimax theorems and Bayesian theorem are important topics
as the asymptotic theory, but it seems too difficult to link these quantum settings and the KMB
Fisher information J,. Thus, in this paper, in order to compare two quantum analogues from
a unified framework, we adopt Bahadur’s large deviation theory as follows. As is discussed in
section 5, we can similarly define the quantities ,B(E 6,¢€) and (x(E 6). Similar to (11) and
(12), under the weak consistency (WC) condition, the inequalities

B(E, 0, ¢) < min{D(pgsellps), D(ps—cllpo)) a(E,0) < 1, (18)

hold. From these discussions, the bound in the large deviation type of evaluation seems
different from that in the MSE case. However, as mentioned in section 6, the inequality

a(E,0) < L1 (19)

holds if the sequence E satisfies the strong consistency (SC) condition introduced in section 6
as a stronger condition. As is mentioned in section 7, these bounds can be attained
in their respective senses. Therefore, roughly speaking, the difference between the two
quantum analogues can be regarded as the difference in consistency conditions and can be
characterized as

1 1
sup hm ,B(E 0,¢€) = = sup hm ,B(E 0,e) = =
Fasc€ -0 €2 2 Fwee -0 €2 2

Even if we restrict our estimators to strongly consistent ones, the difference between the two
appears as

Jo

sup 11m mf—,B(M 0,€) = — (20)
M:SC 2
Jo

llmmf— sup ﬁ(M 0,€) = — 21
-0 €2 2

M:SC
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where, for a precise statement, as expressed in section 9, we need more complicated
definitions.

However, we should consider that the bound % is more meaningful for the following
two reasons. The first reason is the fact that we can construct the sequence of estimators
attaining the bound % at all points, which is proved in section 7. On the other hand, there is a

sequence of estimators attaining the bound % at one point @, but it cannot attain the bound at
all points. The other reason is the naturalness of the conditions for deriving the bound % In

other words, an estimator attaining % is natural, but an estimator attaining % is very irregular.
Such a sequence of estimators can be regarded as a consistent superefficient estimator and
does not satisfy regularity conditions other than the weak consistency condition. This type
of discussion of the superefficiency is different from the MSE type of discussion in that any
consistent superefficient estimator is bounded by inequality (18).

To consider the difference between the two quantum analogues of the Fisher information
in more details, we must analyse how we can achieve the bound % It is important for this
analysis to consider the relationship between the above discussion and the quantum version
of Stein’s lemma in simple hypothesis testing. Similar to the classical case, when the null
hypothesis is the state p and the alternative is the state o, we evaluate the decreasing rate of
the second error probability under the constant constraint of the first error probability. As
was proved in quantum Stein’s lemma, its exponential component is given by the quantum
relative entropy D(pllo) for any € > 0. Hiai and Petz [10] constructed a sequence of
tests to attain the optimal rate D(pl|lo), by constructing the sequence {M"} of POVMs
such that

1 n
lim —D (PY

n—-oon

P;"") = D(pllo). (22)

Ogawa and Nagaoka [11] proved that there is no test exceeding the bound D(p|lo). It was
proven by Hayashi that by using the group representation theory, we can construct the POVM
satisfying (22) independently of p. For the reader’s convenience, we give a summary of this in
appendix J. As discussed in section 7.2, this type of construction is useful for the construction
of an estimator attaining the bound % at one point. Since the proper bound of the large
deviation is %, we cannot regard the quantum estimation as the limit of the quantum Stein’s
lemma. .

In order to consider the properties of estimators attaining the bound % at one point from
another viewpoint, we consider the restriction that makes such a construction impossible.
We introduce a class of estimators whose POVMs do not need a quantum correlation in the
quantum apparatus in section 8. In this class, we assume that the POVM on the /th system is
chosen from / — 1 data. We call such an estimator an adaptive estimator. When an adaptive
estimator E satisfies the weak consistency condition, the inequality

a(E,0) < 1 (23)

holds (see section 6). Similarly, we can define a class of estimators that use quantum
correlations up to m systems. We call such an estimator an m-adaptive estimator. For any
m-adaptive weakly consistent estimator E, inequality (23) holds. Therefore, it is impossible
to construct a sequence of estimators attaining the bound % if we fix the number of systems
in which we use quantum correlations. As mentioned in section 8, taking limit m — oo,
we have

1 - J
lim lim sup —B(M.0,¢) =" 24)
m—o00 e—0 - 2

M:m-AWC



Two quantum analogues of Fisher information 7695

where m-AWC denotes an m-adaptive weakly consistent estimator. However, as the third
characterization of the difference between the two quantum analogues, as precisely mentioned
in section 9, we have

~

1 -
lim lim  sup —p(M.0, €)= (25)
€>0m=00 1 ASC

|

where m-ASC denotes an m-adaptive strongly consistent estimator. A more narrow class of
estimators is treated in equation (25) than in equation (21). Equations (24) and (25) indicate
that the order of limits lim,,_, o, and lim,_,( is more crucial than the difference between two
types of consistencies.

Remark 1. In the estimation of only the spectrum of a density operator in a unitary-invariant
family, the natural inner product in the parameter space is unique and equals the Fisher inner
product in the distribution family whose element is the probability distribution corresponding
to the eigenvalues of a density matrix. In addition, the achievable bound was as was derived
by Keyl and Werner [28], and coincides with the bound uniquely given by the above inner
product.

4. Summary of non-asymptotic setting in quantum estimation

In a quantum system, in order to discuss the probability distribution which the data obey, we
must define a POVM.

A POVM M is defined as a map from the Borel sets of the dataset €2 to the set of bounded,
self-adjoint and positive semi-definite operators, which satisfies

M@) =0 M(Q) =1 Z M(B;) = M(UB;) for disjoint sets.

1

If the state on the quantum system H is a density operator p and we perform a measurement
corresponding to a POVM M on the system, the data obey the probability distribution
Pﬁ‘f(B) := TrpM(B). If a POVM M satisfies M(B)?> = M(B) for any Borel set B, M is
called a projection-valued measure (PVM). The spectral measure of a self-adjoint operator
X is a PVM, and is denoted by E(X). For 1 > A > 0 and any POVMs M; and M, taking
values in 2, the POVM B +— AM(B) + (1 — A)M,(B) is called the random combination
of M; and M> in the ratio A : 1 — A. Even if M;’s dataset Q; is different from M>’s
dataset 2, M and M, can be regarded as POVMs taking values in the disjoint union set
Q][22 := (21 x {1}) U (2, x {2}). In this case, we can define a random combination of
M, and M, as a POVM taking values in € | | ©; and call it the disjoint random combination.
In this paper, we simplify the probability P and the relative entropies D(ps, [ 0s,) and
D(P/’;ZO ||P%l) to PY, D(6||61) and DM (6,]|6;), respectively.

In the one-parameter quantum estimation, the estimator is described by a pair comprised
of a POVM and a map from its dataset to the real number set R. Since the POVM M o T~!
takes values in the real number set R, we can regard any estimator as a POVM taking values
in the real number set R. In order to evaluate MSE, Helstrom [13, 14] derived the SLD
Cramér—Rao inequality as a quantum counterpart of the Cramér—Rao inequality (29). If an
estimator M satisfies

/ x Tr peM(dx) = 0 VO € ® (26)
R
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it is called unbiased. If & — 6y is sufficiently small, we can obtain the following approximation
in the neighbourhood of 6j:

9po
x Tr pg, M (dx) + xTr —
R R a0

It implies the following two conditions:

J
/xTr oo
R 36 9—g,

f T po, M(dx) = 6o, (28)
R

M(dx)) O — 00) =6 + (6 — ).
6=6,

M(dx) =1 27)

If an estimator M satisfies (27) and (28), it is called locally unbiased at ). For any locally
unbiased estimator M (at 6), the inequality, which is called the SLD Cramér—Rao inequality

/ (x — )2 Tr pyM(dx) > — 29)
R Jo

holds. Similar to the classical case, this inequality is derived from the Schwartz inequality
with respect to the SLD Fisher information (X|Y) := Tr py X3 [13-15].

The equality of (29) holds when the estimator is given by the spectral decomposition
E(L“ + 9) of L“ + 6, where Ly is the SLD at 6 and is defined by (3). This implies that
the SLD Flsher information Jy, coincides with the Fisher information at 6y of the probability

)

family

0e® } The monotonicity of quantum relative entropy [29, 30] gives the

(i3

following evaluation of the probability family {P

96@]:

Lg,
E 0
D <J”“ )(9||9o) < D(6]60).
Taking the limit & — 6y, we have
Jo < Jg. (30)

In this paper, we discuss inequality (30) from the viewpoint of the large deviation type of
evaluation of the quantum estimation. The following families are treated as simple examples
of the one-parameter quantum state family, in the latter.

Example 1 (One-parameter equatorial spin 1/2 system state family).

1 /1+rcosf rsinf
— N < .
Sr {'09’ 2( rsin @ l—rcos9)0\9<2n}
In this family, we calculate
r 1+r - r 1+r 2
D(pgllpo) = = (1 —cosB)log Jo = = log Jo=r".
2 1— 2 1—r

Since the relations Jy = 0o and Jy = 1 hold in the case of » = 1, the two quantum analogues
are completely different.

Example 2 (One-parameter quantum Gaussian state family and half-line quantum Gaussian
o 2 n .
state family). We define the boson coherent vector |«) := e Z;’io 57 |n), where |n) is the

number vector on L*(R). The quantum Gaussian state is defined as

1 ezt
=— | |la){a]e” ¥ d« Ve € C.
7N Jc
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We call {py|0 € R} the one-parameter quantum Gaussian state family and call {py|6 >
0(0 € R* = [0, 00))} the half-line quantum Gaussian state family. In this family, we can
calculate

Po || O (0] + = (0] + = —
o1 % g N 0 ¢ & N ¢ N +

=
2
5. The bound under the weak consistency condition

We introduce the quantum independent-identical density (i.i.d.) condition in order to treat an
asymptotic setting. Suppose that n-independent physical systems are prepared in the same
state p. Then, the quantum state of the composite system is described by

P =p®---®p onH>"
—
where the tensored space H®" is defined by
H" =H® - -QH.
———

We call this condition the quantum i.i.d. condition, which is a quantum analogue of the
independent-identical distribution condition. In this setting, any estimator is described by a

POVM M" on H®", whose dataset is R. In this paper, we simplify Pg’gf, and D(P%; P"’gf,)
o o o,

to Pé” " and D" (6y]|601). The notation M x n denotes the POVM in which we perform the
POVM M for the respective n systems.

Definition 1 (Weak consistency condition). A sequence of estimators M = {M"}2, is called
weakly consistent if

lim P {10 — 0| > €} =0 Yo e® Ve>0 (31)
n— 00
where 0 is the estimated value.

This definition means that the estimated value @ converges to the true value 6 in probability,
and can be regarded as the quantum extension of (8).
Now, we focus on the exponential component of the tail probability as follows:

N -1 -
B(M, 0, ¢€) := limsup — log P} {|d — 0] > €}.
n

n—00

We usually discuss the following value instead of 8 (1\71 ,0,¢€):
. 1 -
a(M, 0) := lim sup —Z,B(M,Q,e) (32)
e—>0 €
because it is too difficult to discuss ﬁ(ll7[ ,0,€). The following theorem can be proved from
the monotonicity of the quantum relative entropy.

Theorem 2. (Nagaoka [22, 23]) If a POVM M" on H®" satisfies the weakly consistent
condition (31), the inequalities

B(M. 6. €) < inf{D(pylpo)|l6 —0'] < €} (33)

0

N|&z

a(M,0) < (34)

hold.
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Even if the parameter set ® is not open (e.g., the closed half-line R* := [0, 00)), this theorem
holds.
Proof. The monotonicity of the quantum relative entropy yields the inequality
Pn 1 — pue
Pn 1 - Pn.o
for any 6’ satisfying |0’ — 0| > €, where we denote the probability Pg’,’,"{lé — 0| > €} by ppor.
Using the inequality —(1 — p, ¢/) log(1 — pn.9) = 0, we have
_logPi" {10 — 01>} logpuo _ D (p5"] £5") + h(pno)
n N n = nPn.g

0/
+ (1 = pne)log
0

D (5" || 5™") = pu.o log

(35)

where / is the binary entropy defined by A(x) := —xlogx — (1 — x)log(l — x). Since the
assumption guarantees that p, ¢ — 1, the inequality

B(M.,6,€) < D(pyllps) (36)

holds, where we use the additivity of quantum relative entropy:

D (05" || p5™) = nD(per 1| po)-
Thus, we obtain (33). Taking the limit ¢ — 0 in inequality (36), we obtain (34). ]

As another proof, we can prove this inequality as a corollary of the quantum Stein’s lemma
(10, 11].

6. The bound under the strong consistency condition

As discussed in section 4, the SLD Cramér—Rao inequality guarantees that the lower bound
of MSE is given by the SLD Fisher information. Therefore, it is expected that the bound
is connected with the SLD Fisher information for large deviation. In order to discuss the
relationship between the SLD Fisher information and the bound for large deviation, we need
another characterization with respect to the limit of the tail probability. We thus define

- -1 0oA - r -
B(M,0,¢) = liminf—logPéw {|6 — 0| > €} a(M,0) = liminf—z,B(M,G,e).
- n—-oo n e—>0 ¢€-—

(37

In the following, we attempt to link the quantity o (1\71 ,0) with the SLD Fisher
information. For this purpose, it is suitable to focus on an information quantity that
satisfies the additivity and the monotonicity, as in the proof of theorem 1. Its limit should
be the SLD Fisher information. The Bures distance b(p, o) = \/2(1 — Trlﬁﬁl) =
V' Ming unitary Tr(y/p — ~/oU)({/p — /o U)* is known to be an information quantity whose
limit is the SLD Fisher information, as mentioned in lemma 3. Of course, it can be regarded
as a quantum analogue of the Hellinger distance, and satisfies the monotonicity.

Lemma 3 (Uhlmann [31], Matsumoto [32]). If there exists an SLD Ly satisfying (3), then the
equation

b*(po, Po+e)

= (38)

1 .
37 = Iy
holds.

A proof of lemma 3 is given in appendix C. As discussed in the latter, the Bures distance
satisfies the monotonicity. Unfortunately, the Bures distance does not satisfy the additivity.
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However, the quantum affinity 7 (p||o) = —810gTr|ﬁﬁ| = —8log (1 — %b(p, 0’)2)
satisfies the additivity:

1(p®"lo®") = nl(p|lo). (39

Its classical version is called affinity in the following form [33]:

I(plig) = —8log (Zﬁﬁ) (40)

As a trivial deformation of (38), the equation

1
lim M =Jy (41)
e—0 €

holds. The quantum affinity satisfies the monotonicity w.r.t. any measurement M (Jozsa [34],
Fuchs [35]):

I(plo) =1 (PY|PY) = —8logy" (VPy(w)VPy(w)). 42)

The most simple proof of (42) is given by Fuchs [35] who directly proved that

TV oy < Y (VP VP ). (43)

For reader’s convenience, a proof of (43) is given in appendix D. From (39), (41) and (42), we
can expect that the SLD Fisher information is, in a sense, closely related to a large deviation
type of bound. From the additivity and the monotonicity of the quantum affinity, we can show
the following lemma.

Lemma 4. The inequality

4 lligf>0}(g<ﬁ2, 0,58) +B'(M,0 +38, (1 —5)8)) < I(pollpsss) (44)

holds, where we define (M., 0, 8) := lime_.o B(M, 0,5 — €).

A proof of lemma 4 is given in appendix E. However, lemma 4 cannot yield an inequality
w.r.t. (M, 0) under the weak consistency condition, unlike inequality (36). Therefore, we
consider a stronger condition, which is given in the following.

Definition 5 (Strong consistency condition). A sequence of estimators M= {M"}22 | is called
strongly consistent if the convergence of (37) is uniform for the parameter 0 and if « (1\71 ,0)is
continuous for 0. A sequence of estimators is called strongly consistent at 6 if there exists a
neighbourhood U of 0 such that it is strongly consistent in U.

The square root n consistency is familiar in the field of mathematical statistics. However, in
the large deviation setting, this strong consistency seems more suitable than the square root n
consistency.

As a corollary of lemma 4, we have the following theorem.

Theorem 6. Assume that there exists the SLD Lg satisfying (3). If a sequence of estimators
M = {M"}>2, is strongly consistent at 0, then the inequality

- J
a(M,0) < 59 (45)

holds.
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Proof. From the above assumption, for any real € > 0 and any element 6 € ©, there exists a
sufficiently small real § > 0 such that (a(M 0) — €)e” < B (M 6,€), p (M 0 +6,¢) for
Ve’ < §. Therefore, inequality (44) yields the relations

2@(M, 0) — €)8 = 4(a(M, 0) — ¢) |lmf (5282 + (1 — 5)%8?)

<4 of B (M, 0,58) +B'(M,0+5,(1—5)8) < I(pllposs)- (46)
Lemma 3 and (46) guarantee (45) for VO € ®. 0

Remark 2. Inequality (43) can be regarded as a special case of the monotonicity w.r.t. any
trace-preserving completely positive (CP) map C : S(H;) — S(H>):

(Tr|V/pv/a)? < (Tr |y C(p)y/ C(o))? 47)
which is proved by Jozsa [34] because the map p +— Py can be regarded as a trace-preserving
CP map from the C* algebra of bounded operators on 7 to the commutative C* algebra C ($2),
where €2 is the dataset.

7. Achievabilities of the bounds

Next, we discuss the achievabilities of the two bounds Jy and Jp in their respective senses.
In this section, we discuss the achievabilities in two cases: the first case is the one-parameter
quantum Gaussian state family and the second case is an arbitrary one-parameter finite-
dimensional quantum state family that satisfies some assumptions.

7.1. One-parameter quantum Gaussian state family

In this subsection, we discuss the achievabilities in the one-parameter quantum Gaussian state
family.

Theorem 7. In the one-parameter quantum Gaussian state family, the sequence of estimators
Ms = {M*"}>°, (defined in the following) satisfies the strong consistency condition and the
relations

N N 1
«(hl*,0) = a(MF*, 0) = 2 = 48)

+ 17
*t2

ZI

Construction of M. We perform the POVM E(Q) for all systems, where Q is the position
operator on L%(R). The estimated value &, is determined to be the mean value of n data.

Proof. Since the equation

2
PEIO (dx) =/ = e 2@ dy
s

holds, we have the equation

2 / 2 -0
E(Q)(d-x) (PE(Q)(d‘x)) = —/ |ar)( a\(dx)e % d20l = m e_Z(Wfl) dx.
b/ +

Thus, we obtain the equation

" (dg,) = 2 e
n) = B — el &) (2N+n n
T(2N + 1)n
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which implies that

sn

- —1
B(M?, 0, €) = lim — log PY""{|&, — 0] > €} = —
n N

, (49)
2
Therefore, the sequence of estimators Ms = {M?*"}° | attains the bound % and satisfies the

strong consistency condition. O

Proposition 8. In the half-line quantum Gaussian state family, the sequence of estimators
MY = {M™"}>2 (defined in the following) satisfies the weak consistency condition and the
strong consistency condition at R*\{0} and the relations

- . J 1
a(M"™,0) = a(M",0) = 70 = log (1 +ﬁ) (50)
rw W Jo 1 +
a(M",0) = a(M",0) = 7 = = VO € R*\{0}. 1)
2 N+§

This proposition indicates the significance of the uniformity of the convergence of (37). This
proposition is proved in appendix G.
Construction of M. We perform the following unitary evolution:

—1
P& > e @ pe Y.

For detail, see appendix F. We perform the number measurement E(N) of the first system
whose state is p s, and let k be its data, where the number operator N is defined as

N = Zn n|n)(n|. The estimated value 7, is determined by 7, := \/g .
Theorem 9. In the one-parameter quantum Gaussian state family, for any 0 € R, the sequence

of estimators My = { Mé? ‘"}OO (defined in the following) satisfies the weak consistency
condition and the relations

- S J 1
g(Mg;,el)za(ng,m)=79=1og<1+ﬁ>. (52)

n=1

Construction of M 6+ We divide n systems into two groups. One consists of /1 systems
and the other of n — /n systems. We perform the PVM E(Q) for every system in the first
group. Let & 4 be the mean value in the first group, i.e. we perform the PVM M s/ for the
first system. At the second step, we perform the following unitary evolution for the second
group:

p(;@(n VDN pga_(gl v

For details, see appendix F. We perform the POVM M wn=v/n for the system whose state is
p?f;l ﬁ; the data are written as 7,,_ Ja Then, we decide the final estimated value 8 as

0 := 0, +sgn& 5z — 0T, 4.

Proof. Since

M, A w.n—/n
Py " {10 — 61 > e} =P)"" T, yul > €}
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we have
- - M
B (ng,e,) = lim — logP, " {|0 — 6] > €}
n

I’l—\/ﬁ —1 woan—Ji -
logP T,_ = B(M",0).
;. n—ﬁOgO {IT,— |l > €} = B( )

= lim

As shown in appendix G, we have
- 1

(M™,0) =¢lo (1 + :)
B g ¥

which implies (52). Next, we prove the consistency in the case where 6 > 6. In this case, it
is sufficient to discuss the case where & — 6; > ¢ > 0. Since the first measurement M sV and
the second one M™"~v" are performed independently, we obtain

w,n

M, N w.n—/n s./n
Py {10 =611 > e} <P TIT,_ i — (0 — 00| > e} + Py {5 — 61 <O},

Proposition 8 guarantees that the first term goes to 0 and theorem 7 guarantees that the second
term goes to 0. Thus, we obtain the consistency of My . Similarly, we can prove the weak
consistency in the case where 6 < 6. O

7.2. Finite-dimensional family

In this subsection, we treat the case where the dimension of the Hilbert space H is k (finite).
As for the achievability of inequality (45), we have the following lemma.

Lemma 10. Let 0y be fixed in ©. Under assumptions 1 and 2, the sequence of estimators
M, (defined in the following) satisfies the strong consistency condition at 6y (defined in
definition5) and the relation
0 00) = a (15, 69) = 2 (53)
(04 6o 0 —Q 6o 0) — 2 .

Assumption 1. The map 6 — py is C' and py > 0.
Assumption 2. The map 0 — Tr pg % is injective, i.e. one-to-one.
0

Construction of M 5+ We perform the POVM E (_SZO ) for all systems. The estimated value is
0
determined to be the mean value plus 6.

Proof of lemma 10. From assumption 2, the weak consistency is satisfied. Let § > 0 be a
sufficiently small number. Define the function

L@ Tr ,OQL(;
®0.6,(s) := Tr pg exp (s <—° — 7())) . (54)
Jo, Jo,
Since Hs—;‘:” < oo and Tr pyg (3—;‘: — %) = 0, we have
-1 1 Lo, TrpoLg \*
lim .6, (5) L. Loy _Trpele \™
s—0 52 2 J90 J90

When [|6 — 6]l is sufficiently small, the function x — sup,(xs — log ¢y g,(s)) is continuous
in (=4, 8). Using Cramér’s theorem [36], we have

n—o0

—1 o
lim — log Pglgo {16 — 6y| > €} = min {sup(es — log ¢.4,(5)), sup(—es’ — logqbg,go(s'))}
n s s
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for € < §. Taking the limit ¢ — 0, we have

-1
lim lim TP My {16 — 6y > €)

e—->0n—o0 €

.|, supg(es —log gy g (s)) .. sup;(—€s —logeyg,(s)) 1,
= min { lim , lim = =Cpy
e—0 e? e—0 €2 2 0
where
Lo, TrpeLe, )2
o0, = Tr py <— -
0 Jo, Jo,
because
~ 1 ~ 1 Co, 6, € 62
es —log ¢y g,(s) =€s — log <l + ECB,BOSZ) Zes — ECG,GOSZ = —TO (s — %) + 269’90.
The above convergence is uniform for the neighbourhood of 8y. Taking the limit 6 — 6, we
have
Ly, TrpsLg\” Lo, TrpgLe\"
llmTr,O9< 90—M> = Jy _Trpeo( 0°_m> )
Joy Ja, Ja, Jo,
Thus, we can check (53) and the strong consistency in the neighbourhood of 6. 0

However, this sequence of estimators M 5 depends on the true parameter 6. We should
construct a sequence of estimators that satisfies the strong consistency condition and attains
the bound ]% at all points 0y. Since such a construction is too difficult, we introduce another
strong consistency condition that is weaker than the above and under which inequality (45)
holds. We construct a sequence of estimators that satisfies this strong consistency condition
and attains the bound given in (45) for all 6 in a weak sense.

Second strong consistency condition. A sequence of estimators M = {M"} is called second
strongly consistent if there exists a sequence of functions {,3 (M 0, €)}o>_, such that

e lim lim — ,8 (M 0, e)_(x(M 0).
m~>OOe~>06

° 11m ﬁ (M 0,¢) < oc(M 0) holds. Its Ihs converges locally uniformly to 6.
° Vm, EI(S > 0 s.t. ﬁ(M,Q, €) > ém(M,Q, €), for § > Ve > 0.

Similar to theorem 2, we can prove inequality (45) under the second strong consistency
condition.

Under these preparations, we state a theorem with respect to the attainability of the bound
Jg. The following theorem can be regarded as a special case of theorem 8 of [37].

Theorem 11. Under assumptions 1 and 3, the sequence of estimators 1\7[§ = {Mg"}oo_
n=1

(defined in the following) satisfies the second strong consistency condition and the relations
- = N/
a(M3,6) = a(M3,0) = (1 —5)?0. (55)

The sequence of estimators My is independent of the unknown parameter 6. Every My" is an
adaptive estimator and will be defined in section §.

Its proof is given in appendix H.
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Assumption 3. The following set is compact:

—1

L; TrpgL;\> L; TrpgL;\> y

Trpg<—9— i 9) ,Trpg<—9— i 9) V6,0 € ®
Jy Jy Jy Jy

If the state family is included by a bounded closed set consisting of positive definite operators,
assumption 3 is satisfied.

Construction of ]\71§ We perform a faithful POVM M, (defined in the following) for the
first 6n systems. Then, the data (wy, ..., ws,) obey the probability family {Pg/l ! |9 € @} We
denote the maximum likelihood estimator (MLE) w.r.t. the data (wy, ..., ws,) by 6. Next,
we perform the measurement E (L) defined by the spectral measure of Ly for other (1 — §)n
systems. Then, we have the data (wg;+1, - . . , @,). We decide the final estimated value Té” as

n

I
TrppoLy = —— .
TP = T " s)n 2 @

i=én+l
Definition 12. A POVM M is called faithful, if the map p € S(H) Pg” is one-to-one.

An example of faithful POVM, which is a POVM taking values in the set of pure states on
‘H, is given by M (dp) := kpv(dp), where v is the invariant (w.r.t. the action of SU(H))
probability measure on the set of pure states on . As another example, if Ly, ..., Li_;
is a basis of the space of self-adjoint traceless operators, a disjoint random combination of
PVMs E(Ly), ..., E(Ly_y) is faithful. Note that a disjoint random combination is defined
in section 4.

Remark 3. By dividing n systems into «/n and n — /n systems, Gill and Massar [16]
constructed an estimator which asymptotically attains the optimal bound w.r.t. MSE, and
Hayashi and Matsumoto [38] constructed a similar estimator by dividing them into b, and
n— b, systems, where lim %" = 0. However, in our proof, it is difficult to show the attainability
of the bound (45) in such a division. Perhaps, there may exist a family in which such an
estimator does not attain the bound (45). At least, it is essential in our proof that the number
of the first group b, satisfies lim l;—" > 0.

Conversely, as is mentioned in theorems 9 and 13, by dividing n systems into /z and
n — 4/n systems, we can construct an estimator attaining the bound (34) at one point.

We must use quantum correlations in the quantum apparatus to achieve the bound %
The following theorem can easily be extended to the multi-parameter case.

Theorem 13. We assume assumption I and that D (,0@/}

pe,) < 00 for V6,,¥6' € ©. Then,
for any 0, € ©, the sequence of estimators My = {M(;’f " }ZO=1 satisfies the weak consistency

condition (31), and the equations

(M. 61.€) = B(My. 61.€) = inf {D (o |ps,) 161~ 6] > €] (56)
- - J
a(MY,61) = a(ME,61) = 79 (57)

The sequence of estimators My depends on the unknown parameter 6, but not on € > 0.

Its proof is given in appendix I. In the following construction, Mé’lj " is constructed from the
PVM Ej , which is defined from a group-theoretical viewpoint in definition 29 in appendix J.3.
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Construction of M, gf . We divide the n systems into two groups. We perform a faithful POVM
M s for the first group of \/n systems. Then, the data (w1, ..., ® /) obey the probability Pg/l .

We let § be the MLE of the data (i, . .., ;) under the probability family {P," |6 € ©)].

Next, we perform the correlational PVM Eg:ﬁ for the composite system which consists
0 i

of the other group of n — /n systems. Then, the data w obey the probability P, L

ElV

-
E
e (1=8, ) D(py ”’JHI)PGIQ' (w) > Pée' (w), the estimated value T, is decided to be 6;, where

8y 1= % If not, 7,, is decided to be f.

ns
The following lemma proved in appendix J plays an important role in the proof of
theorem 13.

Lemma 14. For three parameters 0y, 6\ and 6, and § > 0, the inequalities

E! 1 E!
P, {—; logP," () + Tr pg, log pg, > 5}

(k4 Dlog(n +1)

< exp — n( sup (5 — Tr pg, log ,ng)t - —log Tr ,Ogo,ngt>

0<r<1 n
(58)
|1 E}
PQOl —log P01 "(w) — Tr pg, log pg, = 6
n
<exp—n (sup (8 + Tr pg, log py, )t — log Tr ,ogo,ogl) (59)
0<1
hold.
‘We obtain the following theorem as a summary of the above discussion.
Theorem 15. From theorems 2, 6 and 11 and lemma 10, we have the equations
. r - R Jo
sup limsup =B(M,0,€) = sup liminf =B(M,0,€) = — (60)
mwe €0 € M:WC 0 em 2
o -~ Jy
sup hmlnf—zﬂ(M,Q,e) = — 61)
mscag 7YV €T 2

as an operational comparison of Jo and Jy under assumptions 1-3. We can replace p (1\7[ ,0,¢€)
with B(M, 0, €) in equations (60).

We can also prove (30) as a consequence of equations (60) and (61).

8. Adaptive estimators

In this section, we assume that the dimension of the Hilbert space H is finite. We consider
estimators whose POVM is adaptively chosen from the data. We choose the /th POVM
M;(w;—1) on 'H from [ — 1 data w;_; := (wy, ..., w_1). Its POVM M" is described by

M" (@) 1= Mi(w1) @ Ma(@1; w2) ® -+ @ Myy(&p—1; wy). (62)
In this setting, the estimator is written as the pair &, = (M", T,,) of the POVM M" satisfying
(62) and the function 7;, : Q" +— ©. Such an estimator &, is called an adaptive estimator.
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As a larger class of POVMs, the separable POVM is well known. A POVM M" on H®" is
called separable if it is written as

={Mi(0) ® - & My(®)}wen

on H®", where M;(w) is a positive semi-definite operator on H. For any separable estimator
(M", T,), the relations

] - =i Tr po M,
DY @10 = 3 [ Tr po M @) tog Lzt T2 M)

weQ I'=1 1_[7:1 Tr po M (@)
T M,

= ZHTr,ogMp(a))Zlo Ix pp Mifw)

weQ =1 Tr por My (@)

ag.1(w) Tr pg M} (w)

= Z Z ag.1(w) Tr pg M;(w) log

I=1 weQ ag (@) Tr pg M (@)
=>"DMu@ley<n sup  DY@|6) 63)

M:POVM onH

hold, where the POVM My ; on H is defined by

My (@) = ag (@)M(@)  ags(@) = | [ ] TrpoMr(w)
'l

Theorem 16. If a sequence of separable estimators M = {&:} = {(M", T,)} satisfies the
weak consistency condition, the inequalities

B(M,6),¢) < inf sup  DM(9)6) (64)
[0=011>€ pr:-POVM onH

. Ty
a(M,0) < 7‘ (65)

hold.

Proof. Similar to (35), the monotonicity of quantum relative entropy yields

_ log Pyl {|T,(d3) — 01 > €} _ DM'(@1160) + h(P)

n nkP,

where P, := Pg”"{lT,, (&n) — 01| > €}. From the weak consistency, we have P, — 1. Thus,
we obtain (64) from (63). Since H is finite dimensional, the set of extremal points of POVMs
is compact. Therefore, the convergence lim,_, ¢ G%DM (01 + €]|01) is uniform w.r.t. M. This
implies that

1 1 Jo,
lim — sup DM@, +€||6)) = sup  lim —DM(91 +€ll6) = — (66)
€0 €% )1.POVM onH M:POVM onH €0 € 2"
The last equation is derived from (29). 0

The preceding theorem holds for any adaptive estimator. As a simple extension, we can define
an m-adaptive estimator that satisfies (62) when every M;(a;_;) is a POVM on H™. As a
corollary of theorem 16, we have the following.
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Corollary 17. If a sequence of m-adaptive estimators M= {&) = {(M", T,)} satisfies the
weak consistency condition, then the inequalities

R 1
B(M,6,€) < inf sup  —DY (06 (67)
[0=011>€ p1:POVM on HEm M

- J.
a(M, 0)) < 70 (68)

hold.

Now, we obtain the equation

L, - J
lim lim sup —B(M.0.€) =" (69)
M=o e=0 g —awe € 2

The part of > holds because an adaptive estimator attaining the bound is constructed in
theorem 11, and the part of < follows from (67) and the equation

1 1 M . 1 M J9|
lim sup ——D" (01 +€ll6h) = sup lim —— D7 (60, +€]601) = —-
€=0 31:.POVM onHen €M M:POVM on Hem €0 €“m 2

which is proved in a similar manner to (66).

9. Difference in order among limits and supremums

Theorem 15 yields another operational comparison as

1 - N/
sup liminf —B(M.6,€) = = (70)
Mmscag 7Y €T 2

1 - Jo

lim — sup B(M,0,€)=—. 71)
>0 €7 jscae 2
Equation (70) equals (61) apd equation (71) follows from the theorem below. Therefore, the
difference between % and % can be regarded as the difference in the order of lim inf._.o and

SUPz.sc:

Theorem 18. We adopt assumption 1 in theorem 11 and D(,O@f H,O@l) < oo for Vo' € ©. For
any § > 0, there exists a sequence M g;,a = {Mg; ’8’"} of m-adaptive estimators satisfying the

strong consistency condition and the inequality
m,s.n

—1 R
lim — logP, " {I6 — 6| > €} > (1 — 8)inf(D(®160)|16 — 60| > €}
n—-oo nm

(1 —8)(k — 1) log(m + 1)

m

However, using theorem 18, we obtain a stronger equation than (71):

1 -
lim lim sup _2'3(M’ 0,¢€) = (72)

Jy
€= 0m=00 i n-ASC at6 2
where m-ASC at 6 denotes m-adaptive and is strongly consistent at 6. This equation is in
contrast with (69). Of course, the part of < for (72) follows from (67). The part of > for (72)
is derived from the above theorem.

The following two lemmas are essential for our proof of theorem 18.
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Lemma 19. For two parameters 6, and 0y, the inequality
mD(6o]|61) — (k — 1) log(m + 1) < D" (60]161) < mD(0|61) (73)

holds, where the PVM Ej' on H®™ is defined in appendix J.3. It is independent of 0.

This lemma was proved by Hayashi [27] and can be regarded as an improvement of Hiai and
Petz’s result [10]. However, Hiai and Petz’s original version is sufficient for our proof of
theorem 18. For the reader’s convenience, the proof is presented in appendix J.3.

Lemma 20. Let Y be a curved exponential family and X be an exponential family includingY .
For a curved exponential family and an exponential family, see chapter 4 in Amari and
Nagaoka [1] or Barndorff-Nielsen [39]. In this setting, for n-i.i.d. data, the MLE TML (™)
for the exponential family X is a sufficient statistic for the curved exponential family Y where
@p = (01, ...,w,). Using the map T : X — Y, we can define an estimator T o T)}(”nL,
and for an estimator Ty, there exists amap T : X — Y such that Ty = T o T,?f’nL. We can
identify a map T from X to Y with a sequence of estimators T o T,}XHL (&,). We define the map
Ty, : X - Yas

Ty, := argmin{D(x||9)| D(@1l60) < D(x||6)}- (74)

When Y is an exponential family (i.e. flat), Ty, coincides with the projection to Y. Then, the
sequence of estimators corresponding to the map Ty, satisfies the strong consistency at 6y and
the equation

-1 ML :
lim — log pj, {| 7o, © T/} @) = 0] > €} = inf (D@60} 16 — o]l > €] (75)

n— 00

holds.

Proof. It is well known that for any subset X’ C X, the equation

lim —— log po AT (@) € X'} = in)g D(x160) (76)
xeX’

n—oo
holds. For the reader s convenience, we present a proof of (76) in appendix K. Thus,
equation (75) follows from (74) and (76). If Y is an exponential family, then the estimator
Ty, o T;(”nL coincides with the MLE and satisfies the strong consistency. Otherwise, we choose
a neighbourhood U of 6 so that we can approximate the neighbourhood U by the tangent
space. The estimator Ty, o T}}XnL can be approximated by the MLE and satisfies the strong
consistency at U. Thus, it also satisfies the strong consistency at 6. O

Proof of theorem 18. Let M = {M;} be a faithful POVM defined in section 7.2 such that the
number of operators M; is finite. For any m and any § > 0, we define the POVM My to be the
disjoint random combination of M x m and Ej with the ratio § : 1 — §. Note that a disjoint
random combination is defined in section 4. From the definition of My, the inequality

(1 —8)D" (6110) < D" (61|6) (77)

m
%

holds. Since the map 6 + P} is one-to-one, the map 6 > P, is also one-to-one. Since

"
M and Ej are finite resolutions of the identity, the one-parameter family {Pe “ |9 € @} isa
subset of multi-nominal distributions X, which is an exponential family. Applying lemma 20,
we have

lim —llogP {‘TQOOTML(Q)n)—Q()‘ >6}

n—-oo nm

- mgg{DMé’é(eneo)uw — 0l > e}
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> (1-19)
m

inf {DE% ©160)16 — 60| > e}

(1 —8)(k — 1)log(m + 1)
m

where the first inequality follows from (77) and the second inequality follows
from (73). ]

= (1 =8)inf{D(060)[10 — Oo| > €} —

Remark 4. In the case of the one-parameter equatorial spin 1/2 system state family, the map

m

00— P,  is not one-to-one. Therefore, we must not treat Eg; but Mg;.

10. Conclusions

It has been clarified that the SLD Fisher information Jy gives the essential large deviation
bound in the quantum estimation and the KMB Fisher information J, gives the large deviation
bound of consistent superefficient estimators. Since estimators attaining the bound % are
unnatural, the bound % is more important from the viewpoint of quantum estimation than the
bound % On the other hand, as mentioned in appendix A, concerning a quantum analogue of
information geometry from the viewpoint of e-connections, KMB is the most natural among
the quantum versions of the Fisher information. The interpretation of these two facts which
seem to contradict each other, remains a problem. Similarly, it is a future problem to explain
geometrically the relationship between the change of the orders of limits and the difference
between the two quantum analogues of the Fisher information.
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Appendix A. Brief summary of information-geometrical properties of J,, Jo and Jj

The quantum analogues of the Fisher information Jy, Jy and J ¢ are obtained from the inner
products J,, J and J on the linear space consisting of self-adjoint operators

1
J,(A,B) :=TrALp B:/ p'Lgp'~"dt
0

J,(A,B) :==TrALjp B=1(Lgp+pLp)
J,(A,B):=TrALg B=plg
in the following way:
dpy dpg = = (dpg dpg v » (dpy dpg
Jo=Jp | =—, — J J —_— = Jo=1J —, .
o ( a0’ do T\ 4o do 70 de de

In the multi-dimensional case, these are regarded as metrics as follows. For example, we can
define a metric

9pa 3,00) A1)

aisa' =J [
(0. 91 <ael 967

on the tangent space at # and the rhs of (A.1) is called the SLD Fisher matrix.
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In a quantum setting, any information precessing is described by a trace-preserving CP
map C : S(H) — S(H'). These inner products satisfy the monotonicity:

dpy dpe dC(pg) dC(pg)
Joo < ) 2 Jeqn ( . —)

do - do do do
7 <% oo ) = oo <dC(,00)’ dC(Pa))
4o’ do o o
i, <% oo ) > Feos <dC(,00)’ dC(Pa))
a0’ do o o

for a one-parametric density family {py € S(H)|6 € ® C R} [1]. These inequalities can be
regarded as the quantum versions of (5). An inner product satisfying the above is called a
monotone inner product. According to Petz [2], the inner product va is the maximum one
among normalized monotone inner products and the inner product J, is the minimum one.

In the information geometry community, we usually discuss the torsions. As is known
within this community, o-connection is a generalization of e-connection. The torsion of
a-connection concerning the Fisher inner product vanishes in any distribution family [1]. In
quantum setting, we can define the e-connections with respect to several quantum Fisher inner
products. One may expect that in a quantum setting, its torsion vanishes in any density family.
However, for only the inner product J,, the torsion of e-connection vanishes in any density
family [1]. Thus, the KMB Fisher information seems the most natural quantum analogue of
the Fisher information, from an information-geometrical viewpoint.

Appendix B. Proof of (15)

From (14), we can calculate as

- dp, dlogp 1d*logp
D(pg+ellpg) = Tr(pp+e(l0g pgie —log pg)) = Tr <pe + d—;6) ( a0 Ce+ QTGGZ

. dpg - 1 d? log pg 5
=T L +[Tr| — Ly )+ =T _ . B.1
1(pgLo)e < r < 0 9) S Ir (,00 102 € (B.1)
Next, we calculate the above coefficients
- ! - d
Tr(op L) =/ Tr (ph Lop) ™) dt = Tr<£> —0. (B.2)
0

Using (B.2) and (14), we have
d?log pg d dlog ps dpy dlog py dps -~ -
T — ) =— T —Tr|l ———F—— ) =—Tr| —Lo ) =—Jo.
r<p9 d6? ) do < r(” do )) r( 46 do ) r( a6 9) ¢

From (B.1)—(B.3), we obtain

D(poellpo) = LT g€’

Appendix C. Proof of lemma 3

‘We define the unitary operator U, as

b (po. pove) = 21 = Tr | /Bo/Pare) = Tr(\/B — NTUN (/P — VaUL)".



Two quantum analogues of Fisher information 7711

Letting W (¢) be ,/pp+eUe, then we have
b*(po, pose) = Tr(W(0) — W(€)(W(0) — W(e))*
N ( dw ) < dw )* dw .
=Tr{——O)e¢ )| ——0)e ) =Tr —(O) (O)
de de

As is proved in the following discussion, the SLD L satisfies
1
—(O) —LW(O) (C.1)
Therefore, we have
b*(po, pove) = Tr zLW(O)W(0)*Le® = § Tr L% pge.

‘We obtain (38). It is sufficient to show (C.1).
From the definition of the Bures distance, we have

b2 (p, pose) = min Tr(/p5 — v/0o+eU) (V00 = v/po5cU)”

:unitary
= 2 ~ ymax Tr /o </ 0o+ U™ + U /Pore /o

=2- Tr|«/%\/,09+e|+|\/,00+5«/%|
=2- Tr(\/p_(?\/ Po+eU (€)™ + Ue)y :00+e\/,0_9)

which implies that ./pg./Po+cU(€)* = U(€)/Pore~/Po- Therefore, W)W (e)* =
W (e)W(0)*. Taking the derivative, we have

dw dw
W(O0)—(0)* = —(O)W(0)"
de de
which implies that there exists a self-adjoint operator L such that
—(0) —LW(O)
Since pg+e = W(e)W(e)*, we have
dp ! N .
@(9) = E(LW(O)W(O) + W(@O)W(O)*L).

Thus, the operator L coincides with the SLD.

Appendix D. Proof of (43)

Let M = {M;} be an arbitrary POVM. We choose the unitary U satisfying

U 2pV? = /o1 2gp1/2,

Using the Schwarz inequality, we have

VPY (@)VPY () = VTr (M0 2U*) (M0 2U* )T (MY ' 2) (MY p'2)

>Tr( M2 1/2U*)* (M(L/zpl/z) _ |TrUal/2Mw,01/2|.
Therefore,

> (VP @ VP @) = 3 TrUe 2 Mup' 2

w

=|TrUc'?p'?| = Tr/p'/2cp'/2.

ZTr Uo'?M,p'/?
w
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Appendix E. Proof of lemma 4

Let m and € be an arbitrary positive integer and an arbitrary positive real number, respectively.
There exists a sufficiently large integer N such that

1 w A S . - S .

—logP, (10 —0|> —i; <—=B(M,0,—i]|+e

n m - m

1 w | oA ) . - ) .
—logPys 110 — (@ +8)| > —(m—i); <—B(M,0+5, —(m—i)]+e
n m - m

fori =0,...,mandVn > N. From the monotonicity (42) and the additivity (39) of quantum
affinity, we perform the following evaluation:

1
—gl(penpm) = 21 (0" | oi%5)

N

1og(1>g4”{é <OPPYO <OV +PY (0 +5 <0} P {0 +5 <0} + ) PI

1)

I—

5 R 81 ol 8 R 5
x10+—>0—-1)<0<0+—ip P 10+—(G—-1)<0<LO0+—i
m m m m

M" A 1 M 1 A 1
< log(PM{16 — (0 +68)] = 8)7 +PM" (16 — 0] > 8)7

2

LI 5 N 5 RE
+y P {'9‘9'>Z("”} Pﬁs{w—(ms)»;(m—z)})
i=1

N

w | oA 1) 2 M A 1
log| Pyis 110 — (0 +8) > —(m —1)8¢ +Py {|0 —6]| > 5)>
m

+ Zpg”" {|é—9| > %(i - 1)}219{0‘1'; {|é — O+ > %(m —i— 1)}2>

i=1

( n - )
log| exp (_E <E (M,@, Z(m ~ 1)) - 6))

+ exp(—%(ﬁ(zﬁl, 0+5,8) — e)) + iexp<_
i=1

n - 1) .
——<,8(M,9+8,—(m—z—1))—6)))
2 \— m

log(m + 2) exp (—% min <,3 (1\2 6.2 1))
m

SIS -

+,3<1\71,9+5,5(m—i—1))—2e))

- m

| 2= 2 mi 6. 2
Og(m+ )_E(Oglgnmé( 3 7%(1_ ))

+,3<]\71,9+8,£(m—i— l))—26)
- m

N

<,3 <1\71 9, i(i - 1)) - e)
_ m

NN

/N
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where we assume that 8 (1\71 ,0,a) = 0 for any negative real number a. Taking the limit
n — oo after dividing by n, we have

%I(pg||pg+5)>%or<n_in (ﬁ <M 0, 8(z—1))+ﬁ<1\71,9+8,%(m—i—1)>—26).

rsm

Since € > 0 is arbitrary, the inequality

1 1 - ) - 5
g/ @ollposy) > 5 min. (g (M,e, —(i - 1)) +g<M,e+6, —(m—i - 1)))

holds. Taking the limit m — oo, we obtain (44).

Appendix F. Unitary evolutions on the boson coherent system

In the system H = L?(R), the unitary operator U, (8) := exp(Ba* — f*a) acts on the coherent
state as

Ui(B)la) = la — B)
where o and B are complex numbers and « is the annihilation operator. Thus, we can verify
that

Ui(B)paUi(B)* = pa—p
Now, we let a; be the annihilation operator on the ith system. The unitary operator U, () :=
[T, exp(—Ba’ + B*a;) acts on the system H®" as

Ua(B)0g" Un(B)* = 02"
In the two-mode system H ® 7, the unitary V,(¢) := expt(—aja; +ajas) acts as
Vilt)|ay) ® |an) = |ag cost +apsint) @ |—oy sint + ay cost).
Thus, we can verify that
Vi(t)po, @ po, Vi)™ = po, cosi+6, sint & P—0, sin1+6, cos -
Therefore, the unitary V,, := ]_[l'f_l expti(—aja; + aja;) satisfies

1
Vup§" Vi = pym ® p5 "

where cos#; = /=4, sint; = \/;

Appendix G. Proof of proposition 8

For a proof of proposition 8, we need the following lemma.

Lemma 21. Let g,(w), f,(w) be functions on Q2. Assume that the functions B(w) :=
lim,,_ _7] log fu(w) and Br(w) := lim,_ _71 log g, (w) are continuous. If the inequality
gn(w) < 1 holds for any element w € Q2 and any positive integer n, and if there exists a subset
K C 2 such that

lim — log (/ fu(@) da)) > min(f (@) + p2(w))

n—o0

the relation

nllpgo 7 log ( / Jn(@)gn(w) dw) = mm(ﬁ] (@) + Ba(w))
holds.

Similar to lemma 4, lemma 21 is proved.
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Now, we will prove proposition 8. From the definition of M"" and the equation

k
po = ﬁ h (%) |k) (k|, we have

_ k — [n€?]
s N N
log P (T, > €} = lo — | =log| =
SO } gz<N+1> g<N+1)

k>ne?

where [ | is a Gauss notation. Therefore, we obtain
- 1
B(M",0,¢) = e’ log (1 + ﬁ)

which implies (50).

Next, we prove the strong consistency condition and (51). We perform the following

calculation:

won 1 la— /62
PYUT, -0 > €} = k| | —=la)(ale” ~ d*alk
o } Z(I/CMVH(I k)

k>(0+€)?n

2Nk
no_ leb? nla o
I RV 3 @) e g2,

N k!
cnN k>(0—€)?n

The equation
e S e Y
lim —log—=e"" ¥V = ——
n—-oo n N N
holds. Also, as proved in the latter, the equations

-1 2\k )
lim — log Z Me—n\a\

k>(0+€)?n

O +¢)?

||

= <(9+6)210g + e — (9+e)2) 10 +¢€)> — |af?)

1 20k
lim —log| 3 COP)” ol

n—-oo n k'
k<(0—€)?n
0 — 2
= <(9 —e)?log ( | lé) +la> =6 — e)2> (=0 — ) + o))
o
hold, where 1(x) is defined as

1 x>0
w={, 20

For any § > 0, there exists a real number K such that
1 —0)? K -6
lim ——log( £Zexp<—n|0l_ | >dx)= — > 4.
n—oo n la|>K TN N N

Now, we can apply lemma 21 to (G.1). From (G.2) and (G.3), the relations

! e
lim — logP™ {7, — 0 > €}

n—oo n
. <|a—9|2
= min —

aeC N

(G.1)

(G.2)

(G.3)

(G.4)
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2
+ <(9 +¢)?log (9|+I§) +laf =@+ 6)2) 1((0 +¢)? — |a|2))
o
. <|a -0
= min —
aeR N

2
+ <(9 +¢)log (9|+|§) +lo> =0+ 6)2) 1((0 +¢€)* — Ialz))
o

. <s2
= min| —
seR \ N
2
+ <(9 +¢)%log ©te +(0O—5)?—(©O+ 6)2) 1((0 +€)> — (6 — s)2)>
6 —s)?

hold. If € is sufficiently small for §, we have the following approximation:

_ — 2
=1 wn ~ . 1+2N 2N €?
lim —logPy {7, — 0 > €} = min N s

— —e| +=——.
n—0oo 1 142N N+ 3
Thus,
T wn 1
lim lim —logP, {7, -0 > €} = =——. (G.5)
e—0n—oo ne2 1

2
The second convergence of the lhs of (G.5) is uniform in a sufficiently small neighbourhood
Uy, of arbitrary 6y € R*\ {0}.
Similar to (G.5), from (G.4), we can prove

. . _1 MW 1
lim lim —ZlogPe {T, — 0 < —€} = =
ne

e—>0n—o00 N + % ’ (G6)

Also, the second convergence of the lhs of (G.6) is uniform at a sufficiently small
neighbourhood Uy, of arbitrary 6y € R*\{0}. Thus, (51) and the strong consistency condition
are proved.

Next, we prove (G.3) and (G.4). Using the Stirling formula, we have
=1 (n]a|?)tn —nlaf? ) ) )
lim —log ———e =|d6log— +|a| —67) 1(§ — |x|?). (G.7)
n—>c0o [8n]! la|?

Since the relations

2y([(6—€)*n]—1) 2\k 2y ([(6—€)*n]—1)
(n|a|”) € e_n‘a‘z < Z (n|al?) e_,1|Ot|2 <[ —E)Zn] (n]al?) ¢ —nlaf?
([©O —€)?n] - ! , k! (6 —e)*n] — !
k<(0—¢€)’n
hold, (G.4) follows from (G.7). If (6 + €)?> < |«|?, the equation
-1 2\k )
k>(0+€)*n ’
holds. It implies (G.3) in the case of (9 +€)? < ||
Next we prove (G.3) in the case of (6 + €)? > |o/|?. In this case, we have
ok . 2\ [(+€)%n] N
3 W) nel o — 04 ey D7 T e (G g
k! [(6 +¢€)?n]!

Ln>k>(6+€)2n

2k 2y (k+1 2 .
because (% e’"""'z)/(% e7l*) = KL If L and N are sufficiently large for |a/?,

nlal?*
we have
—nL

(n|05|2)k —n|a|2 —k c
ZTe <Y e =T (G.10)

k>Ln k>Ln
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because (G.7) implies that

(o)1

T el < g 1on] V6 >L Vn>N.

nj.

Since the relations

(nlaP) O e p
0 EPRTII S k! ©
[0 +€)"nl! k>(0+€)2n ’
27\[(0+€)*n] —nL
<n(L—® +6)2)M e’ 4 e™
[0 +¢€)2n]! 1—e!

hold, we have

0 +¢)? -1 )t 2
((9+e)2 log( j) +la)? — (9+e)2) > lim — log Z Me*"'“'
ler e n k>(0+€)?n k!
0 +¢)?
> min{((9+e)2log% +la)? — (9+e)2) , L}.
o

If we let L be a sufficiently large real number, we have (G.3).

Appendix H. Proof of theorem 11

In this proof, we use the function ¢, ;(s) defined in (K.1). First, we prove the following four
facts.

(i) The faithful POVM M satisfies the inequalities
B(M;,6,¢)>0 «(M;,6) > 0.
(i1) The relation
Ly TrpoLy\*\
lim ( Tr ps <—9—M> —J,  Vee®
-6 Jy Jy

holds.
(iii) The equation

(H.1)

im o) —1 1 Ly  TrppLy 2
s—0 52 2

li =-Tr
1 Js T

holds. The lhs converges uniformly w.r.t. 6, 6.

(iv) For any real number §, > 0, there exists a sufficiently small real number € > 0 such that
if |Tr pgLy — TrpprLy| < €(1 —82) and |0 — 0] < /€, then |6/ — 0] < e.

Fact (i) is easily proved from the definition of M. Fact (iii) is proved by the relation

Ly TrpgLy

Jy Jy

sup
8.0
Fact (ii) is, also, proved by the relations
Jy Jy Jé Jé

— JQ_] as 0 — 0.
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Fact (iv) follows from the relation
0TrpgLy -
g TP — 1 as 60— 6
00

which follows from fact (i).
Next, we prove the theorem from the preceding four facts. The inequality

PO ¢ Upch <0 € Uy e sup P00 ¢ Up ) + RO ¢ Uy )
éEU@M/;
(H.2)
holds. As proved in the latter, the inequality
1 5x(1=8)n
liminf ——log sup P, """ {77 ¢ Uy .}
nmee o n 0eUy e
-1
1 Ly TrpsLy\’ €2(1 —58y)°
>(1—8)g | (1 —8)* = [Trpp | =2 — d 8
( )8 | €°( 2) 2 ( Po <J(§ 7 7
(H.3)

holds, where the function g(x, y) is defined as g(x, y) := x — log (l +5+ y). Therefore, we
have

. 1 "
B (Mg,e,e) = liminf —— log P}" {0 ¢ Uj_sc}

— n—oo n
-1
) 1 Ly TrpeL;\° €2(1 — 8)?
> 1—8)gle*(1 — 82)° = Trpp[=£ - —— ,——35],
min { ( )8 [€°( 2) 2( rpa(]é 7 7
cB(UMy x 8n},0,/€) ¢ . (H.4)

From facts (i) and (ii), the equations

1
lim —Z(rhs of (H.4))
e—0 €

—1
1-6 Ly TrpsLy\’
5 lim(l—61)2<1—82)2<Trpe(—0— L 9)) — (1 =883
0—0 ]

1-46
= 5 (=81 =8y — (1= 82)°83) (H.5)
hold. The rhs of (H.5) converges locally uniformly w.r.t. 6. Let ém (1\71 5.0, e) be the rhs of
(H.4) in the case of §;, = §3 = mi Therefore, we have

1-6

o] -
lim lim —B (M3,0,¢) =

Mm—>00 e—() €2—Mm 2 Jo
which implies that
a(M3,0) > - 8]9.
If the converse inequality
a(M3,0) < L= 8]9 (H.6)
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holds, we can immediately derive relations (55) and show that the sequence of estimators M 3
satisfies the second strong consistency condition.
In the following, relatlons (H.6) and (H.3) are proved. First, we prove (H.6). We can

evaluate the probability P, ;" {6 € Up)as

—1logP)" {0 € Up.} = —log/PMfX'Sn

< _/ M/X(Sn(dg)log( L x(1=8)n {Tv" ¢ U@e})

DEx(1=9n 1 £¢||0) + h
g_/ P (45 ( Lg 16) (0+§en)
4
P0+§e,n

(dG)PLQX(l S)n {Tén ¢ Ug,e}

where P0 teen = PGL +; 6(:1 8)" {Ty. ¢ Up <}, and similar to (35), we can prove the last inequality.

For any 84 > 0, we have

1
11msup——logP0 {T & Us .}

n—o0

(1 —8)D (0 +£€|0) + M

< lim suP/ P, (d6)(1 - 8) o
e N E=1-84,—(1—8y) - 5)P(9+$e n
)
==, min  D"(O+Eel0) =~ Jp.

=1-84,—(1-34) 2
The last equation is derived from Lebesgue’s convergence theorem and the fact that the

probability Pa ‘ee.n tends to 1 uniformly w.r.t. g, as follows from assumptions 1 and 3.
The reason for the applicability of Lebesgue’s convergence theorem is given as follows.

Since P0 t¢en tends to 1 uniformly w.r.t. 0, there exists N, R > 0 such that P0 teen > 1

R’
V0 € ®,n > N. Thus, we have
DL*(1=9n( + £€|0) + h(P, M”)

R
< (1 =8)D(@O +€£|0) +2) < oo.
ple 1—346
O+&e,n

Therefore, we can apply Lebesgue’s convergence theorem. Thus, the relations

o . . 1 M3
oz(Ms,Q) = hmsuphmsup——zlogPe (T, ¢ Uy}

e—0 n—00
1 —§)limsup — min DL + £€|0
< ( ) Hop ey _min (0 +&€|0)

= (1=8)(1 -84

hold. Since 84 > 0 is arbitrary, inequality (H.6) holds.
Next, we prove the inequality (H.3). Assume that |§ — 0| < € and define

A, 0,0) = suﬂg(né —log ¢ 5(m)).
ne

Then, the inequalities

Lyx(1—=8)n

pLix(1=dn
P, o

(0 ¢ Upe) < (e oLy = Tepolyl < (1 =8)e) - (D)
< 2exp(—(1 — §)nmin{A((1 — 8)e, 0 3,0), A(—(1 — 82)e, 6,6)}) (H.8)
hold, where (H.7) is derived from fact (iv), and (H.8) is derived from Markov’s inequality.
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Thus,
1 n
lim ——log sup PL"X(1 » {0 ¢ Up.e)
n—oo n GEUgf
> (1—8) inf min{A((1 — 8¢, b,0), A(—(1 — 82)e, 6, 0)). (H.9)

GEUH.JZ

We let € > 0 be a sufficiently small real number for arbitrary 63 > 0 and define 1 by

—1
Ly TrpgLy :
=e(1=8) (T -0 _ T
1= ¢€( 2)(“%)(10 7 )

Then, the inequalities
A(E(1 = 8)€,6,0) = (1 — 8)e(En) — log ¢y ()

-1
L; TrpeL;\>
262(1 —8)2 Tr pg <_9 1T pe 9)
Jy Jy

—1
2(1 — 8)> L; TrpeLy\’
~og [ 1+ €0 (Tr,o < 9—M) +8 (H.10)

2 T J;

hold, where (H.10) follows from fact (iii). The uniformity of (H.1) (fact (iii)) and the boundness
of the rhs of (H.1) (assumption 3) guarantee that the choice of € > 0 is independent of 6, 6.
From (H.9) and (H.10), we obtain (H.4) because the function x — g(x, y) where y, x > 0.

Appendix I. Proof of theorem 13

If the true state is pg,, the inequalities

w,n n—/n

M, % sy ENE g
Py, AT, & Us,.c) < PO ¢ Up, o} sup P, {e”““"ﬁww“f“P@fl (@) <P," (w)}
0¢Up,

<1 x sup e "0y DOI0)

0¢Up,

hold. Since (1 — § _f) — 1, we have

lim ——logP {T ¢ Up, } = inf D(9||6?1)
n—o00 ] U9| B
Thus, equation (56) is proved. Then, it implies (57).
Next, we show the weak consistency of M 0‘”1 . Assume that the true state py is not py,.
Then, we have

w,n

M
Py (T, ¢ U} <PY7Y'0 ¢ Upe } +PY7 Y0 € Uy )

n—ﬁ . n—/i
X sup P {e"“—‘snﬁww""ﬂpel‘“ (w) > P;" (a))} (L1)
GeUH n
where €, := D16 8,. Since §, = L, the convergence P, My 9 ¢ Upe}— 0
2|Tr g (log py—log py, )

holds. Also, the relanon Us.e, C Uy, iy holds. If we can prove

sup Pg‘*' {e"“—anw“’”@l)Pgl‘“ (w) > Pé‘*' (a))] -0 (1.2)
0elUy.e,
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we obtain

w,n

P, {T, ¢ Upe,} — O. (1.3)

This condition (I.3) is stronger than the weak consistency condition. Thus, it is sufficient to
show (1.2).
From lemma 14, the relations

peEgl {en(1—8n>D(é||01>pszu (@) > PéEé’] (w)]

1 E} E} < o

R (—logPé (@) +log P," (a))) + D@6y = 8, D@6,
n

g |1 Ej, 1
=P, . (—logPé (w) +1ogP, (a))) + Tr pg (log oy — log ,ogl)
> 8,D(06)) + Tr(ps — py) (log py — log ,09[)}

Ej, 1 Ej, M
<Py - log P, (w) +Tr py log py = 8, D(E161) + Tr(py — py)

g |1 Ej "
X (log py — log ,Og]) +P, . log P91 (w) —Tr pg log pg, = 8,D(0161)

+Tr(pg — py) (log py — log ps,) }

< exp [— (n sup (8, D@1161) + Tr(ps — pg) (log p — log pg, ) — Tr py log py)t

0<r<1
k+ 1)1 +1 "
— tw — log Tr,og,oé_’>:| +exp |:— (n sup (8,D(01161)
n 0<t
+ Tr(pg — py) (log py — log ,Og]) + Tr py log ,Og]) t —log Tr py pél)] (L.4)
D@©]16,)

hold. In the following, we assume that |6 — é| < ¢,. Since €, = 8n, WE

2| Tr dﬁ(bg py—log PHI)|
can derive 8, D(6161) + Tr(ps — p)(log py — log pg,) < $D(061)8, + O(82). Substituting
t = s8,, we have

1 +
sup — (n sup (8, D(01161) + Tr(pg — py) (log ps — log ps,) — Tr pg log py) 1

deu,., M0\ o<i<i

—t(k+ 1) log(n+1)

-
n

(k+1)log(n+1)

n

1 (/1
> sup §<<§D(9||9,)3n+0(53) — Trpp logpé) 58, — 58,

éeUH.en n
1
+ Tr py log pgsé, — = (Tr py (log p)* = (Tr py log pg)*)s8; + O (33))

s (k+1)log(n+1)

n

1 /{1
> sup 8—2(§D(e||91)s53+0(53)—s

fely.,, °n
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1
— 5 (Trpy(log pg)* — (Tr py log p)*)s*5; + O (83))

1 1
— 5D@l6)s E(Tfpe(logpe)z — (Tr pp log pg)*)s* (asn — 00)

|
= -3 (Tr po (log ps)* — (Tt py log pg)?)

< D061 )2
XS5 — 3 D
2(Tr po(log pe)* — (Tr pp log ps)?)
N D(0]161)*
8(Tr pg(log pg)* — (Tr pg log pg)?)”

Thus, we have

. 1 .
lim  sup —2<n sup <(5nD(9||91)+TT(,00—Pé)(logpé—logpel)—Tfpe log py)t

" gty MOn \ 0<i<1
k+1)log(n+1
—t—( Yogn+ 1) _ ]ogTrpg,oé’>>
n
D(061)*

> >0 (%))
8(Tr po (log pg)* — (Tr pg log pp)?)

Also, we obtain

né 0<r

éeUan n
—log Tr py oy, ))

1 1
> sup 2 ((ED(GHQI)(S" + 0 (8,2,) + Tr py log ,o(;]) 58, — Tr pg log pg, s,
éeUan n

1 §
sup — (n sup ((5nD(9 161) + Tr(py — py) (log py — log ps,) + Tr pg log ps,) t

i
-5 (Tr pu (log pa,)” = (Tr p log pel)z) s%6,+0 (5;3)>

= su 1 lD(e||9) i Tr py (1 )> — (Trps1 )2 2) 82
= sup 52 ) 1) ) I pg (10g Py, I pg 10g pg, S n

1 1 2 2\ 2
—~ D@10 — 5 (Tr,og (1og ps,)” — (Tr py log ps,) )s (asn — 00).

Therefore,

"= e, . o

. 1 o
lim sup — (n sup ((8,,D(9 161) + Tr(pe — py) (log py — log ,ogl) + Tr pp log ,Og]) t
0<t

D(06,)
= 5 = >0
8(Tr pg(log pg,)* — (Tr pg log ps,)*)

Since mS,% — 00, relation (I1.2) follows from (I1.4)—(1.6).

—log Tr pg 5, )) (1.6)
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Appendix J. Pinching map and group-theoretical viewpoint

J.1. Pinching map in non-asymptotic setting

In the following, we prove lemma 14 and construct the PVM Ej after some discussions
concerning the pinching map in the non-asymptotic setting and group representation theory.
In this subsection, we present some definitions and discussions of the non-asymptotic setting.

A state p is called commutative withaPVM E (= {E;}) on H if pE; = E; p for any index i.
For PVMs E(= {E;}ic1), F(= {F;}jcs), the notation E < F means that for any index i €
there exists a subset (F/E); of the index set J such that E; = }_,_y/p, Fj. For a state p,
we denote by E(p) the spectral measure of p which can be regarded as a PVM. The pinching
map £ with respect to a PVM E is defined as

Eg:pH— ZE,',OE,' J.1)

which is an affine map from the set of states to itself. Note that the state £g(p) is commutative
with a PVM E. If a PVM F = {F;}c; is commutative with a PVM E = {E;};c;, we can
define the PVM F x E = {F; E;} jerxs, Which satisfies F' x £ > E and F x E > F. For
any PVM E, the supremum of the dimension of E; is denoted by w(E).

Lemma 22. Let E be a PVM such that w(E) < oo. If states o and p are commutative with
the PVM E, and if a PVM F satisfies E < F, E(o) < F, then we have

D(pllo) —logw(E) < D(Er(p)IEF(0)) < D(pllo).
This lemma follows from lemmas 23 and 24 below.
Lemma 23. Let p and o be states. If a PVM F satisfies E(o) < F, then
D(pllo) = D(Er(p)IEF(0)) + D(plIEF(P)). J.2)

Proof. Since E(oc) < F and F is commutative with o, we have Tr&r(p) log€r(o) =
Trplogo. Since p is commutative with log p, we have Tr&r(p)logp = Trplogp.
Therefore, we obtain the following:

D(Er(p)I€r(0)) — D(pllo) = TrEr(p)(ogEr(p) —logEr(0)) — Trp(log p —logo)
=Tr&r(p)(log Er(p) — log p).
This proves (J.2). O

Lemma 24. Let E and F be PVMs suchthat E < F. If a state p is commutative with E, we have

D(pll€r(p)) < logw(E). (J1.3)

Proof. Let a; := TrE;pE; and p; := %Ei,oE,-. Then, we have p = Zi a;pi, Er(p) =
> ai€r(pi), y_;ai = 1. Therefore,

D(pllEr(p) = ) TrEip(log p —log Er(p))
= Z TrEipEi(EilogpE; — EilogEr(p)E;)
=Y a;D(pillEr(p)) < sup D(piIEr (pi))

= sup(Tr p; log pi — Tr&p(pi) log Er (pi))
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—supTrSF(,o,)logSF(,o,) suplogd1mE logw(E).

Thus, we obtain mequallty J.3). 0
Let us consider another type of inequality.

Lemma 25. Let E be a PVM such that w(E) < oo. If the state p is commutative with E, and
if a PVM M satisfies that M > E, we have

p < Em(p)w(E) (J.4)

"> En(p) T w(E) (J.5)

for1 <t <0.
Proof. It is sufficient for (J.4) to show

p < kEm(p) (J.6)

for any state p and any PVM M on a k-dimensional Hilbert space 7. Now, it is sufficient to
prove (J.6) in the pure state case. For any ¢, ¥ € H, we have
2

k
Z (WIM;|p)| > 0.
The last inequality follows from Schwartz inequality for vectors { (| M;|$)}*_, and {1}*_,. It

is well known that the function u > —u~" (0 < ¢ < 1) is an operator monotone function [40].
Thus, (J.4) implies (J.5).

k
(WlkEm (1) (D] — [9)(@l1¥) —kZ (WIMilp) (DI Mi|Yr) —

Lemma 26. [f a PVM M is commutative with a state o and w(M) = 1, we have
PY {logPY (w) > a} < exp (— sup(at — log Tr pa’)) a.7
0<1

for any state p.
Proof. From Markov’s inequality, we have
p{X >a) <exp—A(X, p,a) A(X, p,a) :=at — 1og/e”“w>p(dw). (J.8)
Since w(M) = 1, the relation ), P¥ (0)P) (0)' = TrEy(p)En (o) holds. Tt yields
A, (logPY PY a) = at —log TrEy (p)Ey (o) = at —log Tr po’.
Thus, we obtain (J.7).

Lemma 27. Assume that E and M are PVMs such that w(E) < co, w(M) =1and M > E
If the states p and p’ are commutative with E, we have

PY{—logP} () > a} < exp (— sup ((a — logw(E))t — log Tr pp”)) ) J.9)
0<r<1

Proof. If 0 <t < 1, we have
Ay (—logP¥ . PY a) =ar —log TrEy (p)En (p") ™" = at —log Tr pEy (p))™
> at —logw(E) Trpp' ™" (.10
> (a —logw(E))t —logTrpp’ ™ J.11)
where (J.10) follows from lemma 25. Therefore, from (J.8) and (J.11), we obtain (J.9). O
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J.2. Group representation and its irreducible decomposition

In this subsection, we consider the relation between irreducible representations and PVMs
for the purpose of constructing the PVM Ej and a proof of lemma 14. Let V be a finite-
dimensional vector space over the complex numbers C. A map m from a group G to the
generalized linear group of a vector space V is called a representation on V if the map w
is homomorphic, i.e. w(g;)mw(g2) = 7(g1g2), Vg1, &2 € G. The subspace W of V is called
invariant with respect to a representation  if the vector 7 (g)w belongs to the subspace W
for any vector w € W and any element g € G. The representation 7 is called irreducible
if there is no proper nonzero invariant subspace of V with respect to w. Let 7 and 7, be
representations of a group G on V; and V), respectively. The fensored representation m; ® 1,
of Gon V| ® V; is defined as (11 ® m5)(g) = m1(g) ® m2(g), and the direct sum representation
71 @ mp of G on V) @ V; is also defined as (ry @ m2)(g) = m1(g) @ m2(g).

In the following, we treat a representation 7 of a group G on a finite-dimensional Hilbert
space H. The following fact is crucial in later arguments. There exists an irreducible
decomposition H = H; @ --- @ H; such that the irreducible components are orthogonal
to one another if for any element g € G there exists an element g* € G such that

w(g)* = m(g*), where w(g)* denotes the adjoint of the linear map 7 (g). We can regard the
irreducible decomposition H = H; @ - - - @ H; as the PVM { Py, }izl, where Py, denotes the
projection to H;. If two representations 77| and i satisfy the preceding condition, the tensored
representation r; @ 7, also satisfies it. Note that in general, an irreducible decomposition of
a representation satisfying the preceding condition is not unique. In other words, we cannot

uniquely define the PVM from such a representation.

J.3. Construction of PVM E} and the tensored representation

In this subsection, we construct the PVM Ej after the discussion of the tensored representation.
Let the dimension of the Hilbert space H be k. Concerning the natural representation
msn) of the special linear group SL(H) on H, we consider its nth tensored representation
ngei”(m = TTsL) ® -+ ® TsLy on the tensored space H®". For any element g € SL(H), the

relation sy (11)(g)* = msL)(g*) holds where the element g* € SL(H) denotes the adjoint
matrix of the matrix g. Consequently, there exists an irreducible decomposition of ngg’L”(H)
regarded as a PVM and we denote the set of such PVMs by 1r®",

From Weyl’s dimension formula ((7.1.8) or (7.1.17) in Weyl [41] and Goodman and
Wallach [42]), the nth symmetric tensored space is the maximum-dimensional space in the
irreducible subspaces with respect to the nth tensored representation ng‘i"(m. Its dimension

equals the repeated combination ; H, evaluated by (H, = ("Zf‘ll) = (””;_1) = 1 Hi <
(n + 1)*~!'. Thus, any element E" € Ir®" satisfies

w(E™ < (n+ D1, J.12)

Lemma 28. A PVM E" € Ir®" is commutative with the nth tensored state p®" of any state p
on'H.

Proof. If detp # 0, this lemma is trivial based on the fact that det(p)~'p e SL(H). If
det p = 0, there exists a sequence {p;}7°, such that det p; # O and p; — p asi — oo. We
have p2" — p®" asi — oco. Because a PVM E" € Ir®" is commutative with p=", it is also
commutative with p®". O
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Definition 29. We can define the PVM E" x E(p®") for any PVM E" € Ir®". Now we define
the PVM E} satisfying w(Eg) =1,E; > E"x E(pgz’”)fora PVM E" € Ir®". Note that the
Ej is not unique.

Proof of lemma 14. From lemmas 26 and 27, (J.12) and the definition of E}, we obtain
lemma 14. O

Proof of lemma 19. From lemma 22, (J.12) and the definition of E/, we obtain lemma 19.
O

Appendix K. Large deviation theory for an exponential family

In this section, we summarize the large deviation theory for an exponential family. A
d-dimensional probability family is called an exponential family if there exist linearly
independent real-valued random variables Fy, ..., F; and a probability distribution p on
the probability space €2 such that the family consists of the probability distribution

d
Po(dw) := exp (Z 0" Fi(w) — me)) p(dw)

i=l1

d
V(0) = log/ exp (Z 9"5@)) p(dw).
2 i=1

In this family, the parametric space is given by © := {8 € R¢|0, < y¥/(8) < oo}, the parameter
0 is called the natural parameter and the function 1 (0) is called the potential. We define the
dual potential ¢ (0) and the dual parameter n(0), called the expectation parameter, as

0O _

i92= -
1 (0) YT

d
log/ Fi (o) po(dw) ¢ (0) = max (Z 0" ni(0) — l”(@/)) .
Q@ i=1
From (K.1), we have
d
$O) =Y 0'ni(0) — Y (O).
i=1

In this family, the sufficient statistics are given by F;(w), ..., F;(w). The MLE O(w) is given
by 1:(0(®)) = F;(w). The KL divergence D(616) := D(pe | ps,) is calculated by

po (@)
Do, ()

D(@1160) = /QIOg po(dw) = /QZ (6" = 65) Fi(@) + ¥ (6o) — ¥ (6) po(dw)

= > (0" = 0)) ni(@) + ¥ 00) — Y(0) = p(0) + Y (B0) — Y _ Ogi ()

i

= max (Z 0" (0) - wm) Y (60) = D b ©)

= max Xi:(g/i — 0" (0) — log/Qexp (Xl: (95 _ 96) F,-(a))> pe(dw).
Next, we discuss the n-i.i.d. extension of the family {py|60 € ©}. For the data
Oy = (01, ...,0,) € Q", the probability distribution pjj(@,) = pe(w1) - pe(w,) is
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given by
Pi (@) = exp (n Ze"Fn,,-@n) - mp(e)) p"(dd,)
p"(d@,) = p(dw, )l' - p(dw,)
Fi(@,) = % > Fi(w).

k=1

Since the expectation parameter of the probability family {pg ‘9 € @} is given by nn; (9), the
MLE 0, (&,) is given by

n;i 0,(,)) = nFy i (&) (K.1)

Applying Cramér’s theorem [36] to the random variables Fi, ..., F; and the distribution pg,,
for any subset S C R? we have

. /i ’ . —1 noyr
inf sup (Ze (i — Egy(F))) — g, (@ )) < lim — log pj {F, € S}
nes greRr? nmee n

neintS 0'cRY

< inf sup (Z 0" (i — Eq,(F))) — ¥, (9,)>
where

Eo(F) = / F(@) po(dw)
Q

Vi, (0) = f exp (Z el‘F,-(a») po(dw)
Q@ i

Fu(@y) i= (Fu1(@n). .., Fua(én))
and int S denotes the interior of S, which is consistent with (S¢)¢. Since

sup (Z 0" (i — Ea,(F)) — Vs, (9/))

0'eR?
= sup (E 0" (i — ni(60)) — 1/f(9/)) + 1 (6o) = D(0160)
0'eR? \;

and the map 6 — D(60]|6p) is continuous, it follows from (K.1) that

-1 R
lim — log p}, (8, € ©') = inf D(@]léo)
ee’

n—-o0o n

for any subset ® C O, which is equivalent to (76). Conversely, if an estimator {7}, (o, )}
satisfies the weak consistency

lim py{||T,(&,) — 0|l > €} = 0 Ve >0 VO e€®
n—oo
then, similar to (33), we can prove
—1 . ) ]
lim — log py {T,(w,) € ®'} < inf D(0]|6h).
n—oo n fe®’

Therefore, we can conclude that the MLE is optimal in the large deviation sense for exponential
families.
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