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Abstract
We discuss two quantum analogues of the Fisher information, the symmetric
logarithmic derivative Fisher information and Kubo–Mori–Bogoljubov Fisher
information from a large deviation viewpoint of quantum estimation and prove
that the former gives the true bound and the latter gives the bound of consistent
superefficient estimators. As another comparison, it is shown that the difference
between them is characterized by the change of the order of limits.

PACS numbers: 03.67.−a, 02.50.Tt

1. Introduction

Fisher information plays a central role in statistical inference, but also coincides with a natural
inner product in a distribution family. It is defined as

Jθ :=
∫
�

lθ (ω)
2pθ (ω) dω lθ(ω)pθ (ω) = dpθ(ω)

dθ
(1)

for a probability distribution family {pθ |θ ∈ � ⊂ R} with a probability space �. However,
the quantum version of Fisher information cannot be uniquely determined. In general, there
is a serious arbitrariness concerning the order among non-commutative observables in the
quantization of products of several variables. The problem of the arbitrarity of the quantum
version of Fisher information is caused by the same reason. The geometrical properties of its
quantum analogues have been discussed by many authors [1–4].

One quantum analogue is the Kubo–Mori–Bogoljubov (KMB) Fisher information J̃ ρ
defined by

J̃ θ :=
∫ 1

0
Trρtθ L̃θρ

1−t
θ L̃θ dt

∫ 1

0
ρtθ L̃θρ

1−t
θ dt = dρθ

dθ
(2)

for a quantum state family {ρθ ∈ S(H)|θ ∈ �}, where S(H) is the set of density matrices on
H and the Hilbert space H corresponds to the physical system of interest [1–4]. As proved
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in appendix B, it can be characterized as the limit of quantum relative entropy, which plays
an important role in several topics of quantum information theory, for example, quantum
channel coding [5, 6], quantum source coding [7–9] and quantum hypothesis testing [10, 11].
Moreover, as mentioned in section 3, this inner product is closely related to the canonical
correlation of the linear response theory in statistical mechanics [12]. As mentioned in
appendix A, it appears to be the most natural quantum extension from an information-
geometrical viewpoint. Thus, one might expect that it is significant in quantum estimation,
but its estimation-theoretical characterization has not been sufficiently clarified.

Another quantum analogue is the symmetric logarithmic derivative (SLD) Fisher
information

Jθ := TrL2
θρθ

1

2
(Lθρθ + ρθLθ ) = dρθ

dθ
(3)

where Lθ is called the symmetric logarithmic derivative [13]. It is closely related to the
achievable lower bound of mean square error (MSE) not only for the one-parameter case
[13–15], but also for the multi-parameter case [16–18] in quantum estimation. The difference
between the two can be regarded as the difference in the order of the operators, and reflects
the two ways of defining Fisher information for a probability distribution family.

Currently, the former is closely related to the quantum information theory while the latter
is related to the quantum estimation theory. These two inner products have been discussed
from separated contexts only. In this paper, to clarify the difference, we introduce a large
deviation viewpoint of quantum estimation as a unified viewpoint, whose classical version was
initiated by Bahadur [19–21]. This method may not be standard in mathematical statistics, but
seems a suitable setting for a comparison between two quantum analogues from an estimation
viewpoint. This type of comparison was initiated by Nagaoka [22, 23], and is discussed in
further depth in this paper. Such a large deviation evaluation of quantum estimation is closely
related to the exponent of the overflow probability of quantum universal variable-length
coding [24].

This paper is structured as follows: before we state the main results, we summarize the
classical estimation theory including Bahadur’s large deviation theory, which has been done
in section 2. After this summary, we briefly outline the main results in section 3, i.e. the
difference is characterized from three contexts. To simplify the notation, even if we need
the Gauss notation [ ], we omit it when this does not cause confusion. Some proofs are very
complicated and are presented in the appendices.

2. Summary of classical estimation theory

We summarize the relationship between the parameter estimation for the probability
distribution family {pθ |θ ∈ � ⊂ R} with a probability space� and its Fisher information. The
definitions of Fisher information are given not only by (1), but also by the limit of the relative
entropy (Kullback–Leibler divergence)D(p‖q) := ∫

�
(logp(ω)− log q(ω))p(ω) dω as

Jθ := lim
ε→0

2

ε2
D(pθ+ε‖pθ ). (4)

These two definitions (1) and (4) coincide under some regularity conditions for a family.
Next, we consider a map f from � to �′. Similar to other information quantities (for

example, Kullback divergence, etc) the inequality

Jθ � J ′
θ (5)
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holds, where J ′
θ is the Fisher information of the family {pθ ◦ f −1|θ ∈ �}. Inequality (5)

is called monotonicity. According to Čencov [25], any information quantity satisfying (5)
coincides with a constant times Fisher information Jθ .

For an estimator that is defined as a map from the dataset � to the parameter set �, we
sometimes consider the unbiasedness condition:∫

�

T (ω)pθ (ω) dω = θ ∀θ ∈ �. (6)

The MSE of any unbiased estimator T is evaluated by the following inequality (Cramér–Rao
inequality): ∫

�

(T (ω)− θ)2pθ (ω) dω � 1

Jθ
(7)

which follows from the Schwartz inequality w.r.t. the inner product 〈X,Y 〉 :=∫
�
X(ω)Y (ω)pθ(ω) dω for variables X,Y . When the number of data 
ωn := (ω1, . . . , ωn),

which obey the unknown probability pθ , is sufficiently large, we discuss a sequence {Tn}
of estimators Tn( 
ωn). If {Tn} is suitable as a sequence of estimators, we can expect that it
converges to the true parameter θ in probability, i.e. it satisfies the weak consistency condition:

lim
n→∞p

n
θ {|Tn − θ | > ε} = 0 ∀ε > 0 ∀θ ∈ �. (8)

Usually, the performance of a sequence {Tn} of estimators is measured by the speed of
its convergence. As one criterion, we focus on the speed of the convergence in MSE. If a
sequence {Tn} of estimators satisfies the weak consistency condition (WC) and some regularity
conditions, the asymptotic version of the Cramér–Rao inequality

lim
n→∞ n

∫
�

(Tn( 
ωn)− θ)2pnθ (ω) dω � 1

Jθ
(9)

holds. If it satisfies only the weak consistency condition, it is possible that it surpasses the
bound of (9) at a specific subset. Such a sequence of estimators is called superefficient. We
can reduce its error to any amount at a specific subset with the measure 0 under the weak
consistency condition (8).

As another criterion, we evaluate the decreasing rate of the tail probability:

β({Tn}, θ, ε) := lim
n→∞

−1

n
logpnθ {|Tn − θ | > ε}. (10)

This method was initiated by Bahadur [19–21], and was a much discussed topic among
mathematical statisticians in the 1970s. From the monotonicity of the divergence, we can
prove the inequality

β({Tn}, θ, ε) � min{D(pθ+ε‖pθ ),D(pθ−ε‖pθ )} (11)

for any weakly consistent sequence {Tn} of estimators. Its proof is essentially given in our
proof of theorem 2. Since it is difficult to analyse β({Tn}, θ, ε) except in the case of an
exponential family, we focus on another quantity α({Tn}, θ) := limε→0

1
ε2 β({Tn}, θ, ε). For

an exponential family, see appendix K. Taking the limit ε → +0, we obtain the inequality

α({Tn}, θ) � Jθ

2
. (12)

If Tn is the maximum likelihood estimator (MLE), the equality of (12) holds under some
regularity conditions for the family [21, 26]. This type of discussion is different from the MSE
type of discussion in deriving (12) from only the weak consistency condition. Therefore, there
is no consistent superefficient estimator w.r.t. the large deviation evaluation.
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Indeed, we can relate the above large deviation type of discussion in the estimation to
Stein’s lemma in simple hypothesis testing as follows. In simple hypothesis testing, we decide
whether the null hypothesis should be accepted or rejected from the data 
ωn := (ω1, . . . , ωn)

which obey an unknown probability. For the decision, we must define an accept region An
as a subset of �n. If the null hypothesis is p and the alternative is q, the first error (though
the true distribution is p, we reject the null hypothesis) probability β1,n(An) and the second
error (though the true distribution is q, we accept the null hypothesis) probability β2,n(An) are
given by

β1,n(An) := 1 − pn(An) β2,n(An) := qn(An).

Regarding the decreasing rate of the second error probability under the constant constraint of
the first error probability, the equation

lim
n→∞

−1

n
log min{β2,n(An)|β1,n(An) � ε} = D(p‖q) ε > 0 (13)

holds (Stein’s lemma). Inequality (11) can be derived from this lemma. We can regard the
large deviation type of evaluation in the estimation to be the limit of Stein’s lemma in the case
where the null hypothesis is close to the alternative one.

3. Outline of main results

Let us return to the quantum case. In a quantum setting, we focus two quantum analogues
of the Fisher information, the KMB Fisher information J̃ θ and the SLD Fisher information
Jθ . Indeed, if the state ρθ is non-degenerate, SLD Lθ is not uniquely determined. However,
as is proved in appendix C, the SLD Fisher information Jθ is uniquely determined, i.e. it is
independent of the choice of the SLD Lθ .

On the other hand, according to chapter 7 in Amari and Nagaoka [1], L̃θ has another form

L̃θ = d logρθ
dθ

. (14)

As is proved by using formula (14) in appendix B, the KMB Fisher information J̃ θ can be
characterized as the limit of the quantum relative entropy D(ρ‖σ) := Trρ(logρ − log σ) in
the following way:

J̃ θ = lim
ε→0

2

ε2
D(ρθ+ε‖ρθ ). (15)

Moreover, in the linear response theory of statistical physics, given an equilibrium state ρ,
when a variableA fluctuates with a small value δ, another variable B also is thought to fluctuate
with a constant times δ [12]. Its coefficient is called the canonical correlation and is given by∫ 1

0
Tr ρtθ (A− TrρA)ρ1−t

θ (B − Tr ρB) dt . (16)

Thus, the KMB Fisher information J̃ θ is thought to be more natural from the viewpoint of
statistical physics.

As another quantum analogue, the right logarithmic derivative (RLD) Fisher
information J̌θ

J̌ θ := Trρθ Ľθ Ľ∗
θ ρθ Ľθ = dρθ

dθ

is known. When ρθ does not commute dρθ
dθ and ρθ > 0, the RLD Ľθ is not self-adjoint.

Since it is not useful in the one-parameter case, we do not discuss it in this paper. Since
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the difference in definitions can be regarded as the difference in the order of operators,
these quantum analogues coincide when all states of the family are commutative with each
other. However, in the general case, they do not coincide and the inequality J̃ θ � Jθ
holds, as exemplified in section 4. Concerning some information-geometrical properties, see
appendix A.

In the following, we consider what roles these quantum analogues of Fisher information
play in the parameter estimation for the state family. As is discussed in detail in section 4,
the estimator is described by the pair of positive operator valued measure (POVM) M (which
corresponds to the measurement and is defined in section 4) and the map from the dataset to
the parameter space�. Similar to the classical case, we can define an unbiased estimator. For
any unbiased estimator E, the SLD Cramér–Rao inequality

V (E) � 1

Jθ
(17)

holds, where V (E) is the MSE of the estimator E.
In an asymptotic setting, as a quantum analogue of the n-i.i.d. condition, we treat the

quantum n-i.i.d. condition, i.e. we consider the case where the number of systems that are
independently prepared in the same unknown state is sufficiently large, in section 5. In
this case, the measurement is denoted by a POVM Mn on the composite system H⊗n and
the state is described by the density ρ⊗n. Of course, such POVMs include a POVM that
requires quantum correlations between the respective quantum systems in the measurement
apparatus. Similar to the classical case, for a sequence 
E = {En} of estimators, we can define
the weak consistency condition given in (31). In mathematical statistics, the square root n
consistency, local asymptotic minimax theorems and Bayesian theorem are important topics
as the asymptotic theory, but it seems too difficult to link these quantum settings and the KMB
Fisher information J̃ θ . Thus, in this paper, in order to compare two quantum analogues from
a unified framework, we adopt Bahadur’s large deviation theory as follows. As is discussed in
section 5, we can similarly define the quantities β( 
E, θ, ε) and α( 
E, θ). Similar to (11) and
(12), under the weak consistency (WC) condition, the inequalities

β( 
E, θ, ε) � min{D(ρθ+ε‖ρθ ),D(ρθ−ε‖ρθ )} α( 
E, θ) � 1
2 J̃ θ (18)

hold. From these discussions, the bound in the large deviation type of evaluation seems
different from that in the MSE case. However, as mentioned in section 6, the inequality

α( 
E, θ) � 1
2Jθ (19)

holds if the sequence 
E satisfies the strong consistency (SC) condition introduced in section 6
as a stronger condition. As is mentioned in section 7, these bounds can be attained
in their respective senses. Therefore, roughly speaking, the difference between the two
quantum analogues can be regarded as the difference in consistency conditions and can be
characterized as

sup

E:SC

lim
ε→0

1

ε2
β( 
E, θ, ε) = 1

2
Jθ sup


E:WC

lim
ε→0

1

ε2
β( 
E, θ, ε) = 1

2
J̃ θ .

Even if we restrict our estimators to strongly consistent ones, the difference between the two
appears as

sup

M :SC

lim inf
ε→0

1

ε2
β( 
M, θ, ε) = Jθ

2
(20)

lim inf
ε→0

1

ε2
sup

M:SC

β( 
M, θ, ε) = J̃ θ

2
(21)
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where, for a precise statement, as expressed in section 9, we need more complicated
definitions.

However, we should consider that the bound Jθ
2 is more meaningful for the following

two reasons. The first reason is the fact that we can construct the sequence of estimators
attaining the bound J̃ θ

2 at all points, which is proved in section 7. On the other hand, there is a

sequence of estimators attaining the bound J̃θ
2 at one point θ , but it cannot attain the bound at

all points. The other reason is the naturalness of the conditions for deriving the bound Jθ
2 . In

other words, an estimator attaining Jθ
2 is natural, but an estimator attaining J̃θ

2 is very irregular.
Such a sequence of estimators can be regarded as a consistent superefficient estimator and
does not satisfy regularity conditions other than the weak consistency condition. This type
of discussion of the superefficiency is different from the MSE type of discussion in that any
consistent superefficient estimator is bounded by inequality (18).

To consider the difference between the two quantum analogues of the Fisher information
in more details, we must analyse how we can achieve the bound J̃ θ

2 . It is important for this
analysis to consider the relationship between the above discussion and the quantum version
of Stein’s lemma in simple hypothesis testing. Similar to the classical case, when the null
hypothesis is the state ρ and the alternative is the state σ , we evaluate the decreasing rate of
the second error probability under the constant constraint of the first error probability. As
was proved in quantum Stein’s lemma, its exponential component is given by the quantum
relative entropy D(ρ‖σ) for any ε > 0. Hiai and Petz [10] constructed a sequence of
tests to attain the optimal rate D(ρ‖σ), by constructing the sequence {Mn} of POVMs
such that

lim
n→∞

1

n
D
(

PM
n

ρ

∥∥PM
n

σ

) = D(ρ‖σ). (22)

Ogawa and Nagaoka [11] proved that there is no test exceeding the bound D(ρ‖σ). It was
proven by Hayashi that by using the group representation theory, we can construct the POVM
satisfying (22) independently of ρ. For the reader’s convenience, we give a summary of this in
appendix J. As discussed in section 7.2, this type of construction is useful for the construction
of an estimator attaining the bound J̃ θ

2 at one point. Since the proper bound of the large
deviation is Jθ

2 , we cannot regard the quantum estimation as the limit of the quantum Stein’s
lemma.

In order to consider the properties of estimators attaining the bound J̃ θ
2 at one point from

another viewpoint, we consider the restriction that makes such a construction impossible.
We introduce a class of estimators whose POVMs do not need a quantum correlation in the
quantum apparatus in section 8. In this class, we assume that the POVM on the lth system is
chosen from l − 1 data. We call such an estimator an adaptive estimator. When an adaptive
estimator 
E satisfies the weak consistency condition, the inequality

α( 
E, θ) � 1
2Jθ (23)

holds (see section 6). Similarly, we can define a class of estimators that use quantum
correlations up to m systems. We call such an estimator an m-adaptive estimator. For any
m-adaptive weakly consistent estimator 
E, inequality (23) holds. Therefore, it is impossible
to construct a sequence of estimators attaining the bound J̃ θ

2 if we fix the number of systems
in which we use quantum correlations. As mentioned in section 8, taking limit m → ∞,
we have

lim
m→∞ lim

ε→0
sup


M :m-AWC

1

ε2
β( 
M, θ, ε) = Jθ

2
(24)
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where m-AWC denotes an m-adaptive weakly consistent estimator. However, as the third
characterization of the difference between the two quantum analogues, as precisely mentioned
in section 9, we have

lim
ε→0

lim
m→∞ sup


M :m-ASC

1

ε2
β( 
M, θ, ε) = J̃ θ

2
(25)

where m-ASC denotes an m-adaptive strongly consistent estimator. A more narrow class of
estimators is treated in equation (25) than in equation (21). Equations (24) and (25) indicate
that the order of limits limm→∞ and limε→0 is more crucial than the difference between two
types of consistencies.

Remark 1. In the estimation of only the spectrum of a density operator in a unitary-invariant
family, the natural inner product in the parameter space is unique and equals the Fisher inner
product in the distribution family whose element is the probability distribution corresponding
to the eigenvalues of a density matrix. In addition, the achievable bound was as was derived
by Keyl and Werner [28], and coincides with the bound uniquely given by the above inner
product.

4. Summary of non-asymptotic setting in quantum estimation

In a quantum system, in order to discuss the probability distribution which the data obey, we
must define a POVM.

A POVM M is defined as a map from the Borel sets of the dataset� to the set of bounded,
self-adjoint and positive semi-definite operators, which satisfies

M(∅) = 0 M(�) = I
∑
i

M(Bi) = M(∪Bi) for disjoint sets.

If the state on the quantum system H is a density operator ρ and we perform a measurement
corresponding to a POVM M on the system, the data obey the probability distribution
PMρ (B) := TrρM(B). If a POVM M satisfies M(B)2 = M(B) for any Borel set B, M is
called a projection-valued measure (PVM). The spectral measure of a self-adjoint operator
X is a PVM, and is denoted by E(X). For 1 > λ > 0 and any POVMs M1 and M2 taking
values in �, the POVM B �→ λM1(B) + (1 − λ)M2(B) is called the random combination
of M1 and M2 in the ratio λ : 1 − λ. Even if M1’s dataset �1 is different from M2’s
dataset �2,M1 and M2 can be regarded as POVMs taking values in the disjoint union set
�1
∐
�2 := (�1 × {1}) ∪ (�2 × {2}). In this case, we can define a random combination of

M1 andM2 as a POVM taking values in�1
∐
�2 and call it the disjoint random combination.

In this paper, we simplify the probability PMρθ and the relative entropies D
(
ρθ0

∥∥ρθ1

)
and

D
(
PMρθ0
∥∥PMρθ1

)
to PMθ ,D(θ0‖θ1) and DM(θ0‖θ1), respectively.

In the one-parameter quantum estimation, the estimator is described by a pair comprised
of a POVM and a map from its dataset to the real number set R. Since the POVM M ◦ T −1

takes values in the real number set R, we can regard any estimator as a POVM taking values
in the real number set R. In order to evaluate MSE, Helstrom [13, 14] derived the SLD
Cramér–Rao inequality as a quantum counterpart of the Cramér–Rao inequality (29). If an
estimator M satisfies∫

R

x TrρθM(dx) = θ ∀θ ∈ � (26)
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it is called unbiased. If θ − θ0 is sufficiently small, we can obtain the following approximation
in the neighbourhood of θ0:∫

R

x Trρθ0M(dx) +

(∫
R

x Tr
∂ρθ

∂θ

∣∣∣∣
θ=θ0

M(dx)

)
(θ − θ0)∼= θ0 + (θ − θ0).

It implies the following two conditions:∫
R

x Tr
∂ρθ

∂θ

∣∣∣∣
θ=θ0

M(dx) = 1 (27)∫
R

x Trρθ0M(dx) = θ0. (28)

If an estimator M satisfies (27) and (28), it is called locally unbiased at θ0. For any locally
unbiased estimator M (at θ ), the inequality, which is called the SLD Cramér–Rao inequality∫

R

(x − θ)2 Tr ρθM(dx) � 1

Jθ
(29)

holds. Similar to the classical case, this inequality is derived from the Schwartz inequality
with respect to the SLD Fisher information 〈X|Y 〉 := Tr ρθ XY+YX

2 [13–15].
The equality of (29) holds when the estimator is given by the spectral decomposition

E
(
Lθ
Jθ

+ θ
)

of Lθ
Jθ

+ θ , where Lθ is the SLD at θ and is defined by (3). This implies that
the SLD Fisher information Jθ0 coincides with the Fisher information at θ0 of the probability

family
{

P
E

(
Lθ0
Jθ0

+θ0

)
θ

∣∣∣θ ∈ �
}

. The monotonicity of quantum relative entropy [29, 30] gives the

following evaluation of the probability family
{

P
E

(
Lθ0
Jθ0

+θ0

)
θ

∣∣∣θ ∈ �
}

:

D
E

(
Lθ0
Jθ0

+θ0

)
(θ‖θ0) � D(θ‖θ0).

Taking the limit θ → θ0, we have

Jθ � J̃ θ . (30)

In this paper, we discuss inequality (30) from the viewpoint of the large deviation type of
evaluation of the quantum estimation. The following families are treated as simple examples
of the one-parameter quantum state family, in the latter.

Example 1 (One-parameter equatorial spin 1/2 system state family).

Sr :=
{
ρθ := 1

2

(
1 + r cos θ r sin θ
r sin θ 1 − r cos θ

)∣∣∣∣ 0 � θ < 2π

}
.

In this family, we calculate

D(ρθ‖ρ0) = r

2
(1 − cos θ) log

1 + r

1 − r
J̃ θ = r

2
log

1 + r

1 − r
Jθ = r2.

Since the relations J̃ θ = ∞ and Jθ = 1 hold in the case of r = 1, the two quantum analogues
are completely different.

Example 2 (One-parameter quantum Gaussian state family and half-line quantum Gaussian

state family). We define the boson coherent vector |α〉 := e−|α|2
2
∑∞

n=0
αn√
n!

|n〉, where |n〉 is the

number vector on L2(R). The quantum Gaussian state is defined as

ρθ := 1

πN

∫
C

|α〉〈α| e− |α−θ |2
N d2α ∀θ ∈ C.
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We call {ρθ |θ ∈ R} the one-parameter quantum Gaussian state family and call {ρθ |θ �
0 (θ ∈ R

+ = [0,∞))} the half-line quantum Gaussian state family. In this family, we can
calculate

D
(
ρθ
∥∥ρθ0

) = log

(
1 +

1

N

)
|θ − θ0|2 J̃ θ = 2 log

(
1 +

1

N

)
Jθ = 2

N + 1
2

.

5. The bound under the weak consistency condition

We introduce the quantum independent-identical density (i.i.d.) condition in order to treat an
asymptotic setting. Suppose that n-independent physical systems are prepared in the same
state ρ. Then, the quantum state of the composite system is described by

ρ⊗n := ρ ⊗ · · · ⊗ ρ︸ ︷︷ ︸
n

onH⊗n

where the tensored space H⊗n is defined by

H⊗n := H ⊗ · · · ⊗ H︸ ︷︷ ︸
n

.

We call this condition the quantum i.i.d. condition, which is a quantum analogue of the
independent-identical distribution condition. In this setting, any estimator is described by a

POVM Mn on H⊗n, whose dataset is R. In this paper, we simplify PM
n

ρ⊗n
θ

and D
(

PM
n

ρ⊗n
θ0

∥∥∥PM
n

ρ⊗n
θ1

)
to PM

n

θ and DMn

(θ0‖θ1). The notation M × n denotes the POVM in which we perform the
POVM M for the respective n systems.

Definition 1 (Weak consistency condition). A sequence of estimators 
M := {Mn}∞n=1 is called
weakly consistent if

lim
n→∞ PM

n

θ {|θ̂ − θ | > ε} = 0 ∀θ ∈ � ∀ε > 0 (31)

where θ̂ is the estimated value.

This definition means that the estimated value θ̂ converges to the true value θ in probability,
and can be regarded as the quantum extension of (8).

Now, we focus on the exponential component of the tail probability as follows:

β( 
M, θ, ε) := lim sup
n→∞

−1

n
log PM

n

θ {|θ̂ − θ | > ε}.

We usually discuss the following value instead of β( 
M, θ, ε):
α( 
M, θ) := lim sup

ε→0

1

ε2
β( 
M, θ, ε) (32)

because it is too difficult to discuss β( 
M, θ, ε). The following theorem can be proved from
the monotonicity of the quantum relative entropy.

Theorem 2. (Nagaoka [22, 23]) If a POVM Mn on H⊗n satisfies the weakly consistent
condition (31), the inequalities

β( 
M, θ, ε) � inf{D(ρθ ′ ‖ρθ )||θ − θ ′| < ε} (33)

α( 
M, θ) � J̃θ

2
(34)

hold.
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Even if the parameter set � is not open (e.g., the closed half-line R
+ := [0,∞)), this theorem

holds.

Proof. The monotonicity of the quantum relative entropy yields the inequality

D
(
ρ⊗n
θ ′
∥∥ ρ⊗n

θ

)
� pn,θ ′ log

pn,θ ′

pn,θ
+ (1 − pn,θ ′) log

1 − pn,θ ′

1 − pn,θ

for any θ ′ satisfying |θ ′ − θ | > ε, where we denote the probability PM
n

θ ′′ {|θ̂ − θ | > ε} by pn,θ ′′ .
Using the inequality −(1 − pn,θ ′) log(1 − pn,θ ) � 0, we have

− log PM
n

θ {|θ̂ − θ | > ε}
n

= − logpn,θ
n

�
D
(
ρ⊗n
θ ′
∥∥ ρ⊗n

θ

)
+ h(pn,θ ′)

npn,θ ′
(35)

where h is the binary entropy defined by h(x) := −x log x − (1 − x) log(1 − x). Since the
assumption guarantees that pn,θ ′ → 1, the inequality

β( 
M, θ, ε) � D(ρθ ′ ‖ρθ ) (36)

holds, where we use the additivity of quantum relative entropy:

D
(
ρ⊗n
θ ′
∥∥ ρ⊗n

θ

) = nD(ρθ ′ ‖ρθ ).
Thus, we obtain (33). Taking the limit ε → 0 in inequality (36), we obtain (34). �

As another proof, we can prove this inequality as a corollary of the quantum Stein’s lemma
[10, 11].

6. The bound under the strong consistency condition

As discussed in section 4, the SLD Cramér–Rao inequality guarantees that the lower bound
of MSE is given by the SLD Fisher information. Therefore, it is expected that the bound
is connected with the SLD Fisher information for large deviation. In order to discuss the
relationship between the SLD Fisher information and the bound for large deviation, we need
another characterization with respect to the limit of the tail probability. We thus define

β( 
M, θ, ε) := lim inf
n→∞

−1

n
log PM

n

θ {|θ̂ − θ | > ε} α( 
M, θ) := lim inf
ε→0

1

ε2
β( 
M, θ, ε).

(37)

In the following, we attempt to link the quantity α( 
M, θ) with the SLD Fisher
information. For this purpose, it is suitable to focus on an information quantity that
satisfies the additivity and the monotonicity, as in the proof of theorem 1. Its limit should
be the SLD Fisher information. The Bures distance b(ρ, σ ) :=

√
2(1 − Tr |√ρ√

σ |) =√
minU :unitary Tr(

√
ρ − √

σU)(
√
ρ − √

σU)∗ is known to be an information quantity whose
limit is the SLD Fisher information, as mentioned in lemma 3. Of course, it can be regarded
as a quantum analogue of the Hellinger distance, and satisfies the monotonicity.

Lemma 3 (Uhlmann [31], Matsumoto [32]). If there exists an SLD Lθ satisfying (3), then the
equation

1

4
Jθ = lim

ε→0

b2(ρθ , ρθ+ε)

ε2
(38)

holds.

A proof of lemma 3 is given in appendix C. As discussed in the latter, the Bures distance
satisfies the monotonicity. Unfortunately, the Bures distance does not satisfy the additivity.
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However, the quantum affinity I (ρ‖σ) := −8 log Tr |√ρ√
σ | = −8 log

(
1 − 1

2b(ρ, σ )
2
)

satisfies the additivity:

I (ρ⊗n‖σ⊗n) = nI (ρ‖σ). (39)

Its classical version is called affinity in the following form [33]:

I (p‖q) = −8 log

(∑
i

√
pi

√
qi

)
. (40)

As a trivial deformation of (38), the equation

lim
ε→0

I (ρθ‖ρθ+ε)

ε2
= Jθ (41)

holds. The quantum affinity satisfies the monotonicity w.r.t. any measurement M (Jozsa [34],
Fuchs [35]):

I (ρ‖σ) � I
(

PMρ
∥∥PMσ

) = −8 log
∑
ω

(√
PMρ (ω)

√
PMσ (ω)

)
. (42)

The most simple proof of (42) is given by Fuchs [35] who directly proved that

Tr
√√

ρσ
√
ρ �

∑
ω

(√
PMρ (ω)

√
PMσ (ω)

)
. (43)

For reader’s convenience, a proof of (43) is given in appendix D. From (39), (41) and (42), we
can expect that the SLD Fisher information is, in a sense, closely related to a large deviation
type of bound. From the additivity and the monotonicity of the quantum affinity, we can show
the following lemma.

Lemma 4. The inequality

4 inf
{s|1�s�0}

(β ′( 
M, θ, sδ) + β ′( 
M, θ + δ, (1 − s)δ)) � I (ρθ‖ρθ+δ) (44)

holds, where we define β ′( 
M, θ, δ) := limε→+0 β( 
M, θ, δ − ε).

A proof of lemma 4 is given in appendix E. However, lemma 4 cannot yield an inequality
w.r.t. α( 
M, θ) under the weak consistency condition, unlike inequality (36). Therefore, we
consider a stronger condition, which is given in the following.

Definition 5 (Strong consistency condition). A sequence of estimators 
M = {Mn}∞n=1 is called
strongly consistent if the convergence of (37) is uniform for the parameter θ and if α( 
M, θ) is
continuous for θ . A sequence of estimators is called strongly consistent at θ if there exists a
neighbourhood U of θ such that it is strongly consistent in U.

The square root n consistency is familiar in the field of mathematical statistics. However, in
the large deviation setting, this strong consistency seems more suitable than the square root n
consistency.

As a corollary of lemma 4, we have the following theorem.

Theorem 6. Assume that there exists the SLD Lθ satisfying (3). If a sequence of estimators

M = {Mn}∞n=1 is strongly consistent at θ , then the inequality

α( 
M, θ) � Jθ

2
(45)

holds.
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Proof. From the above assumption, for any real ε > 0 and any element θ ∈ �, there exists a
sufficiently small real δ > 0 such that (α( 
M, θ) − ε)ε ′2 � β ′( 
M, θ, ε ′), β ′( 
M, θ + δ, ε ′) for
∀ε ′ < δ. Therefore, inequality (44) yields the relations

2(α( 
M, θ)− ε)δ2 = 4(α( 
M, θ)− ε) inf
{s|1�s�0}

(s2δ2 + (1 − s)2δ2)

� 4 inf
{s|1�s�0}

(β ′( 
M, θ, sδ) + β ′( 
M, θ + δ, (1 − s)δ)) � I (ρθ‖ρθ+δ). (46)

Lemma 3 and (46) guarantee (45) for ∀θ ∈ �. �

Remark 2. Inequality (43) can be regarded as a special case of the monotonicity w.r.t. any
trace-preserving completely positive (CP) map C : S(H1) → S(H2):

(Tr |√ρ√
σ |)2 � (Tr |

√
C(ρ)

√
C(σ)|)2 (47)

which is proved by Jozsa [34] because the map ρ �→ PMρ can be regarded as a trace-preserving
CP map from theC∗ algebra of bounded operators on H to the commutativeC∗ algebraC(�),
where� is the dataset.

7. Achievabilities of the bounds

Next, we discuss the achievabilities of the two bounds J̃ θ and Jθ in their respective senses.
In this section, we discuss the achievabilities in two cases: the first case is the one-parameter
quantum Gaussian state family and the second case is an arbitrary one-parameter finite-
dimensional quantum state family that satisfies some assumptions.

7.1. One-parameter quantum Gaussian state family

In this subsection, we discuss the achievabilities in the one-parameter quantum Gaussian state
family.

Theorem 7. In the one-parameter quantum Gaussian state family, the sequence of estimators

Ms = {Ms,n}∞n=1 (defined in the following) satisfies the strong consistency condition and the

relations

α( 
Ms, θ) = α( 
Ms, θ) = Jθ

2
= 1

N + 1
2

. (48)

Construction of 
Ms . We perform the POVM E(Q) for all systems, where Q is the position
operator on L2(R). The estimated value ξn is determined to be the mean value of n data.

Proof. Since the equation

PE(Q)|α〉〈α|(dx) =
√

2

π
e−2(x−αx )2 dx

holds, we have the equation

PE(Q)θ (dx) = (PE(Q)ρθ
(dx)

) = 1

πN

∫
C

PE(Q)|α〉〈α|(dx) e−|α−θ |2
N d2α =

√
2

π(2N + 1)
e−2(x−θ)2

2N+1 dx.

Thus, we obtain the equation

PM
s,n

θ (dξn) =
√

2

π(2N + 1)n
e−2(ξn−θ)2

(2N+1)n dξn
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which implies that

β( 
Ms, θ, ε) = lim
−1

n
log PM

s,n

θ {|ξn − θ | > ε} = ε2

N + 1
2

. (49)

Therefore, the sequence of estimators 
Ms = {Ms,n}∞n=1 attains the bound Jθ
2 and satisfies the

strong consistency condition. �

Proposition 8. In the half-line quantum Gaussian state family, the sequence of estimators

Mw = {Mw,n}∞n=0 (defined in the following) satisfies the weak consistency condition and the

strong consistency condition at R
+\{0} and the relations

α( 
Mw, 0) = α( 
Mw, 0) = J̃ 0

2
= log

(
1 +

1

N

)
(50)

α( 
Mw, θ) = α( 
Mw, θ) = Jθ

2
= 1

N + 1
2

∀θ ∈ R
+\{0}. (51)

This proposition indicates the significance of the uniformity of the convergence of (37). This
proposition is proved in appendix G.

Construction of 
Mw. We perform the following unitary evolution:

ρ⊗n
θ �→ ρ√

nθ ⊗ ρ
⊗(n−1)
0 .

For detail, see appendix F. We perform the number measurement E(N) of the first system
whose state is ρ√

nθ , and let k be its data, where the number operator N is defined as

N :=∑n n|n〉〈n|. The estimated value Tn is determined by Tn :=
√
k
n
.

Theorem 9. In the one-parameter quantum Gaussian state family, for any θ ∈ R, the sequence
of estimators 
Mw

θ1
= {

M
w,n
θ1

}∞
n=1 (defined in the following) satisfies the weak consistency

condition and the relations

α
(


Mw
θ1
, θ1

)
= α

(

Mw
θ1
, θ1

)
= J̃ θ

2
= log

(
1 +

1

N

)
. (52)

Construction of 
Mw
θ1

. We divide n systems into two groups. One consists of
√
n systems

and the other of n − √
n systems. We perform the PVM E(Q) for every system in the first

group. Let ξ√n be the mean value in the first group, i.e. we perform the PVM Ms,
√
n for the

first system. At the second step, we perform the following unitary evolution for the second
group:

ρ
⊗(n−√

n)

θ �→ ρ
⊗(n−√

n)

θ−θ1
.

For details, see appendix F. We perform the POVM Mw,n−√
n for the system whose state is

ρ
⊗n−√

n

θ−θ1
; the data are written as Tn−√

n. Then, we decide the final estimated value θ̂ as

θ̂ := θ1 + sgn(ξ√n − θ1)Tn−√
n.

Proof. Since

P
M
w,n
θ1

θ1
{|θ̂ − θ1| > ε} = PM

w,n−√
n

0 {|Tn−√
n| > ε}
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we have

β
(


Mw
θ1
, θ1

)
= lim

−1

n
log P

M
w,n
θ1

θ1
{|θ̂ − θ1| > ε}

= lim
n− √

n

n

−1

n− √
n

log PM
w,n−√

n

0 {|Tn−√
n| > ε} = β( 
Mw, 0).

As shown in appendix G, we have

β( 
Mw, 0) = ε2 log

(
1 +

1

N

)
which implies (52). Next, we prove the consistency in the case where θ > θ1. In this case, it
is sufficient to discuss the case where θ − θ1 > ε > 0. Since the first measurementMs,

√
n and

the second one Mw,n−√
n are performed independently, we obtain

P
M
w,n
θ1

θ {|θ̂ − θ1| > ε} � PM
w,n−√

n

θ {|Tn−√
n − (θ − θ1)| > ε} + PM

s,
√
n

θ {ξ√n − θ1 � 0}.
Proposition 8 guarantees that the first term goes to 0 and theorem 7 guarantees that the second
term goes to 0. Thus, we obtain the consistency of 
Mw

θ1
. Similarly, we can prove the weak

consistency in the case where θ < θ1. �

7.2. Finite-dimensional family

In this subsection, we treat the case where the dimension of the Hilbert space H is k (finite).
As for the achievability of inequality (45), we have the following lemma.

Lemma 10. Let θ0 be fixed in �. Under assumptions 1 and 2, the sequence of estimators

Ms
θ0

(defined in the following) satisfies the strong consistency condition at θ0 (defined in
definition 5) and the relation

α
(


Ms
θ0
, θ0

)
= α

(

Ms
θ0
, θ0

)
= Jθ0

2
. (53)

Assumption 1. The map θ �→ ρθ is C1 and ρθ > 0.

Assumption 2. The map θ �→ Trρθ
Lθ0
Jθ0

is injective, i.e. one-to-one.

Construction of 
Ms
θ0

. We perform the POVM E
(Lθ0
Jθ0

)
for all systems. The estimated value is

determined to be the mean value plus θ0.

Proof of lemma 10. From assumption 2, the weak consistency is satisfied. Let δ > 0 be a
sufficiently small number. Define the function

φθ,θ0(s) := Tr ρθ exp

(
s

(
Lθ0

Jθ0

− Tr ρθLθ0

Jθ0

))
. (54)

Since
∥∥Lθ0
Jθ0

∥∥ < ∞ and Trρθ
(Lθ0
Jθ0

− Tr ρθLθ0
Jθ0

) = 0, we have

lim
s→0

φθ,θ0(s)− 1

s2
= 1

2
Tr ρθ

(
Lθ0

Jθ0

− TrρθLθ0

Jθ0

)2

.

When ‖θ − θ0‖ is sufficiently small, the function x → sups(xs − logφθ,θ0(s)) is continuous
in (−δ, δ). Using Cramér’s theorem [36], we have

lim
n→∞

−1

n
log P

M
s,n
θ0

θ {|θ̂ − θ0| > ε} = min

{
sup
s

(εs − logφθ,θ0(s)), sup
s ′
(−εs′ − logφθ,θ0(s

′))
}
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for ε < δ. Taking the limit ε → 0, we have

lim
ε→0

lim
n→∞

−1

ε2n
P
M
s,n
θ0

θ0
{|θ̂ − θ0| > ε}

= min

{
lim
ε→0

sups (εs − logφθ,θ0(s))

ε2
, lim
ε→0

sups(−εs − logφθ,θ0(s))

ε2

}
= 1

2
c−1
θ,θ0

where

cθ,θ0 := Trρθ

(
Lθ0

Jθ0

− TrρθLθ0

Jθ0

)2

because

εs − logφθ,θ0(s)
∼= εs − log

(
1 +

1

2
cθ,θ0s

2

)
∼= εs − 1

2
cθ,θ0s

2 = −cθ,θ0

2

(
s − ε

cθ,θ0

)
+

ε2

2cθ,θ0

.

The above convergence is uniform for the neighbourhood of θ0. Taking the limit θ → θ0, we
have

lim
θ→θ0

Tr ρθ

(
Lθ0

Jθ0

− TrρθLθ0

Jθ0

)2

= J−1
θ0

= Tr ρθ0

(
Lθ0

Jθ0

− Trρθ0Lθ0

Jθ0

)2

.

Thus, we can check (53) and the strong consistency in the neighbourhood of θ0. �

However, this sequence of estimators 
Ms
δ depends on the true parameter θ0. We should

construct a sequence of estimators that satisfies the strong consistency condition and attains
the bound

Jθ0
2 at all points θ0. Since such a construction is too difficult, we introduce another

strong consistency condition that is weaker than the above and under which inequality (45)
holds. We construct a sequence of estimators that satisfies this strong consistency condition
and attains the bound given in (45) for all θ in a weak sense.

Second strong consistency condition. A sequence of estimators 
M = {Mn} is called second
strongly consistent if there exists a sequence of functions {β

m
( 
M, θ, ε)}∞m=1 such that

• lim
m→∞ lim

ε→0

1

ε2
β
m
( 
M, θ, ε) = α( 
M, θ).

• lim
ε→0

1

ε2
β
m
( 
M, θ, ε) � α( 
M, θ) holds. Its lhs converges locally uniformly to θ .

• ∀m, ∃δ > 0 s.t. β( 
M, θ, ε) � β
m
( 
M, θ, ε), for δ > ∀ε > 0.

Similar to theorem 2, we can prove inequality (45) under the second strong consistency
condition.

Under these preparations, we state a theorem with respect to the attainability of the bound
Jθ . The following theorem can be regarded as a special case of theorem 8 of [37].

Theorem 11. Under assumptions 1 and 3, the sequence of estimators 
Ms
δ = {

M
s,n
δ

}∞
n=1

(defined in the following) satisfies the second strong consistency condition and the relations

α
( 
Ms

δ, θ
) = α

( 
Ms
δ, θ
) = (1 − δ)

Jθ

2
. (55)

The sequence of estimators 
Ms
δ is independent of the unknown parameter θ . EveryMs,n

δ is an
adaptive estimator and will be defined in section 8.

Its proof is given in appendix H.
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Assumption 3. The following set is compact:

(

Trρθ

(
Lθ̌

Jθ̌
− Tr ρθLθ̌

Jθ̌

)2
)−1

,Trρθ

(
Lθ̌

Jθ̌
− Tr ρθLθ̌

Jθ̌

)2
∣∣∣∣∣∣∀θ, θ̌ ∈ �


 .

If the state family is included by a bounded closed set consisting of positive definite operators,
assumption 3 is satisfied.

Construction of 
Ms
δ . We perform a faithful POVM Mf (defined in the following) for the

first δn systems. Then, the data (ω1, . . . , ωδn) obey the probability family
{
P
Mf

θ

∣∣θ ∈ �}. We
denote the maximum likelihood estimator (MLE) w.r.t. the data (ω1, . . . , ωδn) by θ̌ . Next,
we perform the measurementE(Lθ̌ ) defined by the spectral measure of Lθ̌ for other (1 − δ)n

systems. Then, we have the data (ωδn+1, . . . , ωn). We decide the final estimated value T n
θ̌

as

TrρT n
θ̌
Lθ̌ = 1

(1 − δ)n

n∑
i=δn+1

ωi.

Definition 12. A POVM M is called faithful, if the map ρ ∈ S(H) �→ PMρ is one-to-one.

An example of faithful POVM, which is a POVM taking values in the set of pure states on
H, is given by Mh(dρ) := kρν(dρ), where ν is the invariant (w.r.t. the action of SU(H))
probability measure on the set of pure states on H. As another example, if L1, . . . , Lk2−1

is a basis of the space of self-adjoint traceless operators, a disjoint random combination of
PVMs E(L1), . . . , E(Lk2−1) is faithful. Note that a disjoint random combination is defined
in section 4.

Remark 3. By dividing n systems into
√
n and n − √

n systems, Gill and Massar [16]
constructed an estimator which asymptotically attains the optimal bound w.r.t. MSE, and
Hayashi and Matsumoto [38] constructed a similar estimator by dividing them into bn and
n−bn systems, where lim bn

n
= 0. However, in our proof, it is difficult to show the attainability

of the bound (45) in such a division. Perhaps, there may exist a family in which such an
estimator does not attain the bound (45). At least, it is essential in our proof that the number
of the first group bn satisfies lim bn

n
> 0.

Conversely, as is mentioned in theorems 9 and 13, by dividing n systems into
√
n and

n− √
n systems, we can construct an estimator attaining the bound (34) at one point.

We must use quantum correlations in the quantum apparatus to achieve the bound J̃ θ
2 .

The following theorem can easily be extended to the multi-parameter case.

Theorem 13. We assume assumption 1 and that D
(
ρθ ′
∥∥ρθ1

)
< ∞ for ∀θ1,∀θ ′ ∈ �. Then,

for any θ1 ∈ �, the sequence of estimators 
Mw
θ1

= {
M

w,n
θ1

}∞
n=1 satisfies the weak consistency

condition (31), and the equations

β
( 
Mw

θ1
, θ1, ε

) = β
( 
Mw

θ1
, θ1, ε

) = inf
θ ′∈�

{
D
(
ρθ ′
∥∥ρθ1

) ∣∣|θ1 − θ ′| > ε
}

(56)

α
( 
Mw

θ1
, θ1
) = α

( 
Mw
θ1
, θ1
) = J̃ θ1

2
. (57)

The sequence of estimators 
Mw
θ1

depends on the unknown parameter θ1 but not on ε > 0.

Its proof is given in appendix I. In the following construction, Mw,n
θ1

is constructed from the
PVMEnθ1

, which is defined from a group-theoretical viewpoint in definition 29 in appendix J.3.
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Construction ofMw,n
θ1

. We divide the n systems into two groups. We perform a faithful POVM

Mf for the first group of
√
n systems. Then, the data (ω1, . . . , ω√

n) obey the probability P
Mf

θ .

We let θ̌ be the MLE of the data (ω1, . . . , ω
√
n) under the probability family

{
P
Mf

θ

∣∣θ ∈ �
}
.

Next, we perform the correlational PVM E
n−√

n

θ1
for the composite system which consists

of the other group of n − √
n systems. Then, the data ω obey the probability P

E
n−√

n

θ1
θ . If

en(1−δn−√
n)D(ρθ̌‖ρθ1 )P

E
n−√

n

θ1
θ1

(ω) � P
E
n−√

n

θ1

θ̌
(ω), the estimated value Tn is decided to be θ1, where

δn := 1

n
1
5

. If not, Tn is decided to be θ̌ .

The following lemma proved in appendix J plays an important role in the proof of
theorem 13.

Lemma 14. For three parameters θ0, θ1 and θ2 and δ > 0, the inequalities

P
Enθ1
θ0

{
− 1

n
log P

Enθ1
θ2
(ω) + Trρθ0 logρθ2 � δ

}

� exp − n
(

sup
0�t�1

(
δ − Trρθ0 logρθ2

)
t − t

(k + 1) log(n + 1)

n
− log Trρθ0ρθ2

−t
)

(58)

P
Enθ1
θ0

{
1

n
log P

Enθ1
θ1
(ω)− Tr ρθ0 logρθ1 � δ

}

� exp − n

(
sup
0�t

(
δ + Trρθ0 logρθ1

)
t − log Tr ρθ0ρ

t
θ1

)
(59)

hold.

We obtain the following theorem as a summary of the above discussion.

Theorem 15. From theorems 2, 6 and 11 and lemma 10, we have the equations

sup

M :WC

lim sup
ε→0

1

ε2
β( 
M, θ, ε) = sup


M:WC

lim inf
ε→0

1

ε2
β( 
M, θ, ε) = J̃ θ

2
(60)

sup

M :SC at θ

lim inf
ε→0

1

ε2
β( 
M, θ, ε) = Jθ

2
(61)

as an operational comparison of J̃ θ and Jθ under assumptions 1–3. We can replaceβ( 
M, θ, ε)
with β( 
M, θ, ε) in equations (60).

We can also prove (30) as a consequence of equations (60) and (61).

8. Adaptive estimators

In this section, we assume that the dimension of the Hilbert space H is finite. We consider
estimators whose POVM is adaptively chosen from the data. We choose the lth POVM
Ml( 
ωl−1) on H from l − 1 data 
ωl−1 := (ω1, . . . , ωl−1). Its POVM Mn is described by

Mn( 
ωn) := M1(ω1)⊗M2( 
ω1;ω2)⊗ · · · ⊗Mn( 
ωn−1;ωn). (62)

In this setting, the estimator is written as the pair En = (Mn, Tn) of the POVM Mn satisfying
(62) and the function Tn : �n �→ �. Such an estimator En is called an adaptive estimator.
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As a larger class of POVMs, the separable POVM is well known. A POVM Mn on H⊗n is
called separable if it is written as

Mn = {M1(ω)⊗ · · · ⊗Mn(ω)}ω∈�

on H⊗n, where Mi(ω) is a positive semi-definite operator on H. For any separable estimator
(Mn, Tn), the relations

DMn

(θ‖θ ′) =
∑
ω∈�

n∏
l′=1

TrρθMl′(ω) log

∏n
l=1 TrρθMl(ω)∏n
l=1 Trρθ ′Ml(ω)

=
∑
ω∈�

n∏
l′=1

TrρθMl′(ω)

n∑
l=1

log
Tr ρθMl(ω)

Trρθ ′Ml(ω)

=
n∑
l=1

∑
ω∈�

aθ,l(ω)TrρθMl(ω) log
aθ,l(ω)Tr ρθMl(ω)

aθ,l(ω)Trρθ ′Ml(ω)

=
n∑
l=1

DMθ,l (θ‖θ ′) � n sup
M :POVM onH

DM(θ‖θ ′) (63)

hold, where the POVM Mθ,l on H is defined by

Mθ,l(ω) := aθ,l(ω)Ml(ω) aθ,l(ω) :=

∏
l′ �=l

Tr ρθMl′(ω)


 .

Theorem 16. If a sequence of separable estimators 
M = {En} = {(Mn, Tn)} satisfies the
weak consistency condition, the inequalities

β( 
M, θ1, ε) � inf
|θ−θ1|>ε

sup
M :POVM onH

DM(θ‖θ1) (64)

α( 
M, θ1) � Jθ1

2
(65)

hold.

Proof. Similar to (35), the monotonicity of quantum relative entropy yields

− log PM
n

θ1
{|Tn( 
ωn)− θ1| > ε}

n
� DMn

(θ‖θ1) + h(Pn)

nPn

where Pn := PM
n

θ {|Tn( 
ωn) − θ1| > ε}. From the weak consistency, we have Pn → 1. Thus,
we obtain (64) from (63). Since H is finite dimensional, the set of extremal points of POVMs
is compact. Therefore, the convergence limε→0

1
ε2D

M(θ1 + ε‖θ1) is uniform w.r.t. M. This
implies that

lim
ε→0

1

ε2
sup

M :POVM onH
DM(θ1 + ε‖θ1) = sup

M :POVM onH
lim
ε→0

1

ε2
DM(θ1 + ε‖θ1) = Jθ1

2
. (66)

The last equation is derived from (29). �

The preceding theorem holds for any adaptive estimator. As a simple extension, we can define
an m-adaptive estimator that satisfies (62) when every Ml( 
ωl−1) is a POVM on Hm. As a
corollary of theorem 16, we have the following.



Two quantum analogues of Fisher information 7707

Corollary 17. If a sequence of m-adaptive estimators 
M = {En} = {(Mn, Tn)} satisfies the
weak consistency condition, then the inequalities

β( 
M, θ1, ε) � inf
|θ−θ1|>ε

sup
M :POVM onH⊗m

1

m
DM(θ‖θ1) (67)

α( 
M, θ1) � Jθ1

2
(68)

hold.

Now, we obtain the equation

lim
m→∞ lim

ε→0
sup


M :m−AWC

1

ε2
β( 
M, θ, ε) = Jθ

2
. (69)

The part of � holds because an adaptive estimator attaining the bound is constructed in
theorem 11, and the part of � follows from (67) and the equation

lim
ε→0

sup
M :POVM onH⊗m

1

ε2m
DM(θ1 + ε‖θ1) = sup

M :POVM onH⊗m
lim
ε→0

1

ε2m
DM(θ1 + ε‖θ1) = Jθ1

2

which is proved in a similar manner to (66).

9. Difference in order among limits and supremums

Theorem 15 yields another operational comparison as

sup

M :SC at θ

lim inf
ε→0

1

ε2
β( 
M, θ, ε) = Jθ

2
(70)

lim
ε→0

1

ε2
sup


M:SC at θ

β( 
M, θ, ε) = J̃ θ

2
. (71)

Equation (70) equals (61) and equation (71) follows from the theorem below. Therefore, the
difference between Jθ

2 and J̃ θ
2 can be regarded as the difference in the order of lim infε→0 and

sup 
M:SC.

Theorem 18. We adopt assumption 1 in theorem 11 and D
(
ρθ ′
∥∥ρθ1

)
< ∞ for ∀θ ′ ∈ �. For

any δ > 0, there exists a sequence 
Mm,δ
θ0

= {
M

m,δ,n
θ0

}
of m-adaptive estimators satisfying the

strong consistency condition and the inequality

lim
n→∞

−1

nm
log P

M
m,δ,n
θ0

θ0
{|θ̂ − θ0| > ε} � (1 − δ) inf{D(θ‖θ0)||θ − θ0| > ε}

− (1 − δ)(k − 1) log(m + 1)

m
.

However, using theorem 18, we obtain a stronger equation than (71):

lim
ε→0

lim
m→∞ sup


M :m-ASC at θ

1

ε2
β( 
M, θ, ε) = J̃ θ

2
(72)

where m-ASC at θ denotes m-adaptive and is strongly consistent at θ . This equation is in
contrast with (69). Of course, the part of � for (72) follows from (67). The part of � for (72)
is derived from the above theorem.

The following two lemmas are essential for our proof of theorem 18.
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Lemma 19. For two parameters θ1 and θ0, the inequality

mD(θ0‖θ1)− (k − 1) log(m + 1) � D
Emθ1 (θ0‖θ1) � mD(θ0‖θ1) (73)

holds, where the PVM Emθ1
on H⊗m is defined in appendix J.3. It is independent of θ0.

This lemma was proved by Hayashi [27] and can be regarded as an improvement of Hiai and
Petz’s result [10]. However, Hiai and Petz’s original version is sufficient for our proof of
theorem 18. For the reader’s convenience, the proof is presented in appendix J.3.

Lemma 20. Let Y be a curved exponential family and X be an exponential family including Y.
For a curved exponential family and an exponential family, see chapter 4 in Amari and
Nagaoka [1] or Barndorff-Nielsen [39]. In this setting, for n-i.i.d. data, the MLE T MLX,n (ω

n)

for the exponential family X is a sufficient statistic for the curved exponential family Y, where

ωn := (ω1, . . . , ωn). Using the map T : X → Y , we can define an estimator T ◦ T MLX,n ,
and for an estimator TY , there exists a map T : X → Y such that TY = T ◦ T MLX,n . We can
identify a map T from X to Y with a sequence of estimators T ◦ T MLX,n ( 
ωn). We define the map
Tθ0 : X → Y as

Tθ0 := arg min
θ∈Y

{D(x‖θ)|D(θ‖θ0) � D(x‖θ0)}. (74)

When Y is an exponential family (i.e. flat), Tθ0 coincides with the projection to Y. Then, the
sequence of estimators corresponding to the map Tθ0 satisfies the strong consistency at θ0 and
the equation

lim
n→∞

−1

n
logpnθ0

{∥∥Tθ0 ◦ T MLX,n ( 
ωn)− θ0

∥∥ > ε
} = inf

θ∈Y
{D(θ‖θ0)|‖θ − θ0‖ > ε} (75)

holds.

Proof. It is well known that for any subset X′ ⊂ X, the equation

lim
n→∞− 1

n
logpnθ0

{
T MLX,n ( 
ωn) ∈ X′} = inf

x∈X′
D(x‖θ0) (76)

holds. For the reader’s convenience, we present a proof of (76) in appendix K. Thus,
equation (75) follows from (74) and (76). If Y is an exponential family, then the estimator
Tθ0 ◦ T MLX,n coincides with the MLE and satisfies the strong consistency. Otherwise, we choose
a neighbourhood U of θ0 so that we can approximate the neighbourhood U by the tangent
space. The estimator Tθ0 ◦ T MLX,n can be approximated by the MLE and satisfies the strong
consistency at U. Thus, it also satisfies the strong consistency at θ0. �

Proof of theorem 18. LetM = {Mi} be a faithful POVM defined in section 7.2 such that the
number of operatorsMi is finite. For any m and any δ > 0, we define the POVMMm

θ0
to be the

disjoint random combination of M × m and Emθ0
with the ratio δ : 1 − δ. Note that a disjoint

random combination is defined in section 4. From the definition ofMm
θ0

, the inequality

(1 − δ)D
Emθ0 (θ‖θ) � D

Mm
θ0 (θ‖θ) (77)

holds. Since the map θ �→ PMθ is one-to-one, the map θ �→ P
Mm
θ0

θ is also one-to-one. Since

M and Emθ0
are finite resolutions of the identity, the one-parameter family

{
P
Mm
θ0

θ

∣∣θ ∈ �
}

is a
subset of multi-nominal distributions X, which is an exponential family. Applying lemma 20,
we have

lim
n→∞

−1

nm
log P

Mm
θ0

×n
θ0

{∣∣Tθ0 ◦ T MLX,n ( 
ωn)− θ0

∣∣ > ε
}

= 1

M
inf
θ∈�

{
D
Mm
θ0 (θ‖θ0)‖|θ − θ0| > ε

}
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� (1 − δ)

m
inf
{
D
Emθ0 (θ‖θ0)‖θ − θ0| > ε

}
� (1 − δ) inf{D(θ‖θ0)||θ − θ0| > ε} − (1 − δ)(k − 1) log(m + 1)

m

where the first inequality follows from (77) and the second inequality follows
from (73). �

Remark 4. In the case of the one-parameter equatorial spin 1/2 system state family, the map

θ �→ P
Emθ0
θ is not one-to-one. Therefore, we must not treat Emθ0

but Mm
θ0

.

10. Conclusions

It has been clarified that the SLD Fisher information Jθ gives the essential large deviation
bound in the quantum estimation and the KMB Fisher information J̃θ gives the large deviation
bound of consistent superefficient estimators. Since estimators attaining the bound J̃θ

2 are
unnatural, the bound Jθ

2 is more important from the viewpoint of quantum estimation than the

bound J̃θ
2 . On the other hand, as mentioned in appendix A, concerning a quantum analogue of

information geometry from the viewpoint of e-connections, KMB is the most natural among
the quantum versions of the Fisher information. The interpretation of these two facts which
seem to contradict each other, remains a problem. Similarly, it is a future problem to explain
geometrically the relationship between the change of the orders of limits and the difference
between the two quantum analogues of the Fisher information.
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Appendix A. Brief summary of information-geometrical properties of Jθ, J̃θ and J̌θ

The quantum analogues of the Fisher information Jθ , J̃ θ and J̌ θ are obtained from the inner
products Jρ, J̃ ρ and J̌ ρ on the linear space consisting of self-adjoint operators

J̃ρ(A,B) := TrAL̃B B =
∫ 1

0
ρtL̃Bρ

1−t dt

Jρ(A,B) := TrALB B = 1
2 (LBρ + ρLB)

J̌ ρ(A,B) := TrAĽB B = ρĽB

in the following way:

Jθ = Jρθ

(
dρθ
dθ
,

dρθ
dθ

)
J̃ θ = J̃ ρθ

(
dρθ
dθ
,

dρθ
dθ

)
J̌ θ = J̌ ρθ

(
dρθ
dθ
,

dρθ
dθ

)
.

In the multi-dimensional case, these are regarded as metrics as follows. For example, we can
define a metric

〈∂i, ∂j 〉 = Jρθ

(
∂ρθ

∂θ i
,
∂ρθ

∂θj

)
(A.1)

on the tangent space at θ and the rhs of (A.1) is called the SLD Fisher matrix.
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In a quantum setting, any information precessing is described by a trace-preserving CP
map C : S(H) → S(H′). These inner products satisfy the monotonicity:

Jρθ

(
dρθ
dθ
,

dρθ
dθ

)
� JC(ρθ )

(
dC(ρθ)

dθ
,

dC(ρθ )

dθ

)

J̃ ρθ

(
dρθ
dθ
,

dρθ
dθ

)
� J̃ C(ρθ )

(
dC(ρθ)

dθ
,

dC(ρθ)

dθ

)

J̌ ρθ

(
dρθ
dθ
,

dρθ
dθ

)
� J̌ C(ρθ )

(
dC(ρθ)

dθ
,

dC(ρθ)

dθ

)
for a one-parametric density family {ρθ ∈ S(H)|θ ∈ � ⊂ R} [1]. These inequalities can be
regarded as the quantum versions of (5). An inner product satisfying the above is called a
monotone inner product. According to Petz [2], the inner product J̌ρ is the maximum one
among normalized monotone inner products and the inner product Jρ is the minimum one.

In the information geometry community, we usually discuss the torsions. As is known
within this community, α-connection is a generalization of e-connection. The torsion of
α-connection concerning the Fisher inner product vanishes in any distribution family [1]. In
quantum setting, we can define the e-connections with respect to several quantum Fisher inner
products. One may expect that in a quantum setting, its torsion vanishes in any density family.
However, for only the inner product J̃ρ , the torsion of e-connection vanishes in any density
family [1]. Thus, the KMB Fisher information seems the most natural quantum analogue of
the Fisher information, from an information-geometrical viewpoint.

Appendix B. Proof of (15)

From (14), we can calculate as

D(ρθ+ε‖ρθ ) = Tr(ρθ+ε(logρθ+ε − logρθ ))∼= Tr

(
ρθ +

dρθ
dθ
ε

)(
d logρθ

dθ
ε +

1

2

d2 logρθ
dθ2

ε2

)

= Tr(ρθ L̃θ )ε +

(
Tr

(
dρθ
dθ
L̃θ

)
+

1

2
Tr

(
ρθ

d2 logρθ
dθ2

))
ε2. (B.1)

Next, we calculate the above coefficients

Tr(ρθ L̃θ ) =
∫ 1

0
Tr
(
ρtθ L̃θρ

1−t
θ

)
dt = Tr

(
dρθ
dθ

)
= 0. (B.2)

Using (B.2) and (14), we have

Tr

(
ρθ

d2 logρθ
dθ2

)
= d

dθ

(
Tr

(
ρθ

d logρθ
dθ

))
− Tr

(
dρθ
dθ

d logρθ
dθ

)
=− Tr

(
dρθ
dθ
L̃θ

)
= −J̃ θ .

(B.3)

From (B.1)–(B.3), we obtain

D(ρθ+ε‖ρθ )∼= 1
2 J̃ θ ε

2.

Appendix C. Proof of lemma 3

We define the unitary operator Uε as

b2(ρθ , ρθ+ε) = 2(1 − Tr |√ρθ√ρθ+ε|) = Tr(
√
ρ − √

σUε)(
√
ρ − √

σUε)
∗.
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LettingW(ε) be
√
ρθ+εUε , then we have

b2(ρθ , ρθ+ε) = Tr(W(0)−W(ε))(W(0)−W(ε))∗

∼= Tr

(
−dW

dε
(0)ε

)(
−dW

dε
(0)ε

)∗
∼= Tr

dW

dε
(0)

dW

dε
(0)∗ε2.

As is proved in the following discussion, the SLD L satisfies

dW

dt
(0) = 1

2
LW(0). (C.1)

Therefore, we have

b2(ρθ , ρθ+ε)∼= Tr 1
4LW(0)W(0)

∗Lε2 = 1
4 TrL2ρθε.

We obtain (38). It is sufficient to show (C.1).
From the definition of the Bures distance, we have

b2(ρθ , ρθ+ε) = min
U :unitary

Tr(
√
ρθ − √

ρθ+εU)(
√
ρθ − √

ρθ+εU)
∗

= 2 − max
U :unitary

Tr
√
ρθ

√
ρθ+εU

∗ + U
√
ρθ+ε

√
ρθ

= 2 − Tr |√ρθ√ρθ+ε| + |√ρθ+ε
√
ρθ |

= 2 − Tr(
√
ρθ

√
ρθ+εU(ε)

∗ + U(ε)
√
ρθ+ε

√
ρθ )

which implies that
√
ρθ

√
ρθ+εU(ε)

∗ = U(ε)
√
ρθ+ε

√
ρθ . Therefore, W(0)W(ε)∗ =

W(ε)W(0)∗. Taking the derivative, we have

W(0)
dW

dε
(0)∗ = dW

dε
(0)W(0)∗

which implies that there exists a self-adjoint operator L such that

dW

dε
(0) = 1

2
LW(0).

Since ρθ+ε = W(ε)W(ε)∗, we have

dρ

dθ
(θ) = 1

2
(LW(0)W(0)∗ +W(0)W(0)∗L).

Thus, the operator L coincides with the SLD.

Appendix D. Proof of (43)

Let M = {Mi} be an arbitrary POVM. We choose the unitary U satisfying

Uσ 1/2ρ1/2 =
√
ρ1/2σρ1/2.

Using the Schwarz inequality, we have√
PMρ (ω)

√
PMσ (ω) =

√
Tr
(
M

1/2
ω σ 1/2U∗)∗(M1/2

ω σ 1/2U∗)√Tr
(
M

1/2
ω ρ1/2

)∗(
M

1/2
ω ρ1/2

)
� Tr

(
M1/2
ω σ 1/2U∗)∗ (M1/2

ω ρ1/2) = ∣∣TrUσ 1/2Mωρ
1/2
∣∣.

Therefore, ∑
ω

(√
PMρ (ω)

√
PMσ (ω)

)
�
∑
ω

|TrUσ 1/2Mωρ
1/2| �

∣∣∣∣∣∑
ω

TrUσ 1/2Mωρ
1/2

∣∣∣∣∣
= |TrUσ 1/2ρ1/2| = Tr

√
ρ1/2σρ1/2.
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Appendix E. Proof of lemma 4

Let m and ε be an arbitrary positive integer and an arbitrary positive real number, respectively.
There exists a sufficiently large integer N such that

1

n
log PM

n

θ

{
|θ̂ − θ | > δ

m
i

}
� −β

(

M, θ, δ

m
i

)
+ ε

1

n
log PM

n

θ+δ

{
|θ̂ − (θ + δ)| > δ

m
(m− i)

}
� −β

(

M, θ + δ,

δ

m
(m− i)

)
+ ε

for i = 0, . . . ,m and ∀n � N . From the monotonicity (42) and the additivity (39) of quantum
affinity, we perform the following evaluation:

−n
8
I (ρθ‖ρθ+δ) = −1

8
I
(
ρ⊗n
θ

∥∥ρ⊗n
θ+δ

)
� log

(
PM

n

θ {θ̂ � θ} 1
2 PM

n

θ+δ{θ̂ � θ} 1
2 + PM

n

θ {θ + δ < θ̂} 1
2 PM

n

θ+δ{θ + δ < θ̂} 1
2 +

m∑
i=1

PM
n

θ

×
{
θ +

δ

m
(i − 1) < θ̂ � θ +

δ

m
i

} 1
2

PM
n

θ+δ

{
θ +

δ

m
(i − 1) < θ̂ � θ +

δ

m
i

} 1
2

)

� log

(
PM

n

θ+δ{|θ̂ − (θ + δ)| � δ} 1
2 + PM

n

θ {|θ̂ − θ | > δ} 1
2

+
m∑
i=1

PM
n

θ

{
|θ̂ − θ | > δ

m
(i − 1)

} 1
2

PM
n

θ+δ

{
|θ̂ − (θ + δ)| � δ

m
(m− i)

} 1
2

)

� log

(
PM

n

θ+δ

{
|θ̂ − (θ + δ)| > δ

m
(m− 1)δ

} 1
2

+ PM
n

θ {|θ̂ − θ | > δ} 1
2

+
m∑
i=1

PM
n

θ

{
|θ̂ − θ | > δ

m
(i − 1)

} 1
2

PM
n

θ+δ

{
|θ̂ − (θ + δ)| > δ

m
(m− i − 1)

} 1
2

)

� log

(
exp

(
−n

2

(
β

(

M, θ, δ

m
(m− 1)

)
− ε

))

+ exp
(
−n

2
(β( 
M, θ + δ, δ)− ε)

)
+

m∑
i=1

exp

(
−n

2

(
β

(

M, θ, δ

m
(i − 1)

)
− ε

)

− n

2

(
β

(

M, θ + δ,

δ

m
(m− i − 1)

)
− ε

)))

� log(m + 2) exp

(
−n

2
min

0�i�m

(
β

(

M, θ, δ

m
(i − 1)

)

+ β

(

M, θ + δ,

δ

m
(m− i − 1)

)
− 2ε

))

= log(m + 2)− n

2

(
min

0�i�m
β

(

M, θ, δ

m
(i − 1)

)

+ β

(

M, θ + δ,

δ

m
(m− i − 1)

)
− 2ε

)
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where we assume that β( 
M, θ, a) = 0 for any negative real number a. Taking the limit
n → ∞ after dividing by n, we have

1

8
I (ρθ‖ρθ+δ) � 1

2
min

0�i�m

(
β

(

M, θ, δ

m
(i − 1)

)
+ β

(

M, θ + δ,

δ

m
(m− i − 1)

)
− 2ε

)
.

Since ε > 0 is arbitrary, the inequality

1

8
I (ρθ‖ρθ+δ) � 1

2
min

0�i�m

(
β

(

M, θ, δ

m
(i − 1)

)
+ β

(

M, θ + δ,

δ

m
(m− i − 1)

))
holds. Taking the limit m → ∞, we obtain (44).

Appendix F. Unitary evolutions on the boson coherent system

In the system H = L2(R), the unitary operatorU1(β) := exp(βa∗ −β∗a) acts on the coherent
state as

U1(β)|α〉 = |α − β〉
where α and β are complex numbers and a is the annihilation operator. Thus, we can verify
that

U1(β)ραU1(β)
∗ = ρα−β .

Now, we let ai be the annihilation operator on the ith system. The unitary operator Un(β) :=∏n
i=1 exp(−βa∗

i + β∗ai) acts on the system H⊗n as

Un(β)ρ
⊗n
θ Un(β)

∗ = ρ⊗n
θ−β.

In the two-mode system H ⊗ H, the unitary V2(t) := exp t (−a∗
2a1 + a∗

1a2) acts as

V1(t)|α1〉 ⊗ |α2〉 = |α1 cos t + α2 sin t〉 ⊗ |−α1 sin t + α2 cos t〉.
Thus, we can verify that

V1(t)ρθ1 ⊗ ρθ2V1(t)
∗ = ρθ1 cos t+θ2 sin t ⊗ ρ−θ1 sin t+θ2 cos t .

Therefore, the unitary Vn :=∏n
i=1 exp ti (−a∗

i a1 + a∗
1ai) satisfies

Vnρ
⊗n
θ V ∗

n = ρ√
nθ ⊗ ρ

⊗(n−1)
0

where cos ti =
√
i−1
i
, sin ti =

√
1
i
.

Appendix G. Proof of proposition 8

For a proof of proposition 8, we need the following lemma.

Lemma 21. Let gn(ω), fn(ω) be functions on �. Assume that the functions β1(ω) :=
limn→∞ −1

n
log fn(ω) and β2(ω) := limn→∞ −1

n
log gn(ω) are continuous. If the inequality

gn(ω) � 1 holds for any element ω ∈ � and any positive integer n, and if there exists a subset
K ⊂ � such that

lim
n→∞

−1

n
log

(∫
K

fn(ω) dω

)
> min

ω∈�
(β1(ω) + β2(ω))

the relation

lim
n→∞

−1

n
log

(∫
�

fn(ω)gn(ω) dω

)
= min

ω∈�
(β1(ω) + β2(ω))

holds.

Similar to lemma 4, lemma 21 is proved.
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Now, we will prove proposition 8. From the definition of Mw,n and the equation
ρ0 = 1

N+1

∑
k

(
N

N+1

)k|k〉〈k|, we have

log PM
s,n

0 {Tn > ε} = log
∑
k>nε2

(
N

N + 1

)k
= log

(
N

N + 1

)[nε2]

where [ ] is a Gauss notation. Therefore, we obtain

β( 
Mw, 0, ε) = ε2 log

(
1 +

1

N

)
which implies (50).

Next, we prove the strong consistency condition and (51). We perform the following
calculation:

PM
w,n

θ {Tn − θ > ε} =
∑

k>(θ+ε)2n

〈k|
∫

C

1

πN
|α〉〈α| e− |α−√

nθ |2
N d2α|k〉

=
∫

C

√
n

πN
e−n |α−θ |2

N

∑
k>(θ−ε)2n

(n|α|2)k
k!

e−n|α|2 d2α. (G.1)

The equation

lim
n→∞

−1

n
log

√
n

πN
e−n |α−θ |2

N = |α − θ |2
N

(G.2)

holds. Also, as proved in the latter, the equations

lim
n→∞

−1

n
log


 ∑
k>(θ+ε)2n

(n|α|2)k
k!

e−n|α|2



=
(
(θ + ε)2 log

(θ + ε)2

|α|2 + |α|2 − (θ + ε)2
)

1((θ + ε)2 − |α|2) (G.3)

lim
n→∞

−1

n
log


 ∑
k<(θ−ε)2n

(n|α|2)k
k!

e−n|α|2



=
(
(θ − ε)2 log

(θ − ε)2

|α|2 + |α|2 − (θ − ε)2
)

1(−(θ − ε)2 + |α|2) (G.4)

hold, where 1(x) is defined as

1(x) =
{

1 x � 0
0 x < 0.

For any δ > 0, there exists a real number K such that

lim
n→∞ − 1

n
log

(∫
|α|>K

√
n

πN
exp

(
−n |α − θ |2

N

)
dx

)
= K − θ

N
> δ.

Now, we can apply lemma 21 to (G.1). From (G.2) and (G.3), the relations

lim
n→∞

−1

n
log PM

w,n
θ {Tn − θ > ε}

= min
α∈C

( |α − θ |2
N
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+

(
(θ + ε)2 log

(θ + ε)2

|α|2 + |α|2 − (θ + ε)2
)

1((θ + ε)2 − |α|2)
)

= min
α∈R

( |α − θ |2
N

+

(
(θ + ε)2 log

(θ + ε)2

|α|2 + |α|2 − (θ + ε)2
)

1((θ + ε)2 − |α|2)
)

= min
s∈R

(
s2

N

+

(
(θ + ε)2 log

(θ + ε)2

(θ − s)2
+ (θ − s)2 − (θ + ε)2

)
1((θ + ε)2 − (θ − s)2)

)
hold. If ε is sufficiently small for θ , we have the following approximation:

lim
n→∞

−1

n
log PM

w,n

θ {Tn − θ > ε} ∼= min
s

1 + 2N

N

(
s − 2N

1 + 2N
ε

)2

+
ε2

N + 1
2

.

Thus,

lim
ε→0

lim
n→∞

−1

nε2
log PM

w,n

θ {Tn − θ > ε} = 1

N + 1
2

. (G.5)

The second convergence of the lhs of (G.5) is uniform in a sufficiently small neighbourhood
Uθ0 of arbitrary θ0 ∈ R

+\{0}.
Similar to (G.5), from (G.4), we can prove

lim
ε→0

lim
n→∞

−1

nε2
log PM

w,n

θ {Tn − θ < −ε} = 1

N + 1
2

. (G.6)

Also, the second convergence of the lhs of (G.6) is uniform at a sufficiently small
neighbourhoodUθ0 of arbitrary θ0 ∈ R

+\{0}. Thus, (51) and the strong consistency condition
are proved.

Next, we prove (G.3) and (G.4). Using the Stirling formula, we have

lim
n→∞

−1

n
log

(n|α|2)[δn]

[δn]!
e−n|α|2 =

(
δ log

δ

|α|2 + |α| − δ2

)
1(δ − |α|2). (G.7)

Since the relations
(n|α|2)([(θ−ε)2n]−1)

([(θ − ε)2n] − 1)!
e−n|α|2 �

∑
k<(θ−ε)2n

(n|α|2)k
k!

e−n|α|2 � [(θ − ε)2n]
(n|α|2)([(θ−ε)2n]−1)

([(θ − ε)2n] − 1)!
e−n|α|2

hold, (G.4) follows from (G.7). If (θ + ε)2 � |α|2, the equation

lim
n→∞

−1

n
log

∑
k>(θ+ε)2n

(n|α|2)k
k!

e−n|α|2 = 0 (G.8)

holds. It implies (G.3) in the case of (θ + ε)2 � |α|2.
Next we prove (G.3) in the case of (θ + ε)2 > |α|2. In this case, we have∑

Ln>k>(θ+ε)2n

(n|α|2)k
k!

e−n|α|2 � n(L− (θ + ε)2)
(n|α|2)[(θ+ε)2n]

[(θ + ε)2n]!
e−n|α|2 (G.9)

because
(
(n|α|2)k
k! e−n|α|2)/( (n|α|2)(k+1)

(k+1)! e−n|α|2) = k+1
n|α|2 . If L and N are sufficiently large for |α|2,

we have ∑
k�Ln

(n|α|2)k
k!

e−n|α|2 �
∑
k�Ln

e−k = e−nL

1 − e−1
(G.10)



7716 M Hayashi

because (G.7) implies that

(n|α|2)[δn]

[δn]!
e−n|α|2 � e−[δn] ∀δ � L ∀n � N.

Since the relations

(n|α|2)[(θ+ε)2n]

[(θ + ε)2n]!
e−n|α|2 �

∑
k>(θ+ε)2n

(n|α|2)k
k!

e−n|α|2

� n(L− (θ + ε)2)
(n|α|2)[(θ+ε)2n]

[(θ + ε)2n]!
e−n|α|2 +

e−nL

1 − e−1

hold, we have(
(θ + ε)2 log

(θ + ε)2

|α|2 + |α|2 − (θ + ε)2
)

� lim
n→∞

−1

n
log


 ∑
k>(θ+ε)2n

(n|α|2)k
k!

e−n|α|2



� min

{(
(θ + ε)2 log

(θ + ε)2

|α|2 + |α|2 − (θ + ε)2
)
, L

}
.

If we let L be a sufficiently large real number, we have (G.3).

Appendix H. Proof of theorem 11

In this proof, we use the function φθ,θ̌ (s) defined in (K.1). First, we prove the following four
facts.

(i) The faithful POVM Mf satisfies the inequalities

β( 
Mf , θ, ε) > 0 α( 
Mf , θ) > 0.

(ii) The relation

lim
θ̌→θ

(
Tr ρθ

(
Lθ̌

Jθ̌
− TrρθLθ̌

Jθ̌

)2
)−1

= Jθ ∀θ ∈ �

holds.
(iii) The equation

lim
s→0

φθ,θ̌ (s)− 1

s2
= 1

2
Trρθ

(
Lθ̌

Jθ̌
− Tr ρθLθ̌

Jθ̌

)2

(H.1)

holds. The lhs converges uniformly w.r.t. θ, θ̌ .
(iv) For any real number δ2 > 0, there exists a sufficiently small real number ε > 0 such that

if |Tr ρθLθ̌ − Trρθ ′Lθ̌ | � ε(1 − δ2) and |θ̌ − θ | < √
ε, then |θ ′ − θ | < ε.

Fact (i) is easily proved from the definition of Mf . Fact (iii) is proved by the relation

sup
θ̌ ,θ

∥∥∥∥Lθ̌Jθ̌ − Tr ρθLθ̌
Jθ̌

∥∥∥∥ < ∞.

Fact (ii) is, also, proved by the relations

Trρθ

(
Lθ̌

Jθ̌
− TrρθLθ̌

Jθ̌

)2

= Tr ρθ
(
L2
θ̌

)
J 2
θ̌

− (TrρθLθ̌ )
2

J 2
θ̌

→ J−1
θ as θ̌ → θ.
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Fact (iv) follows from the relation

∂ Tr ρθLθ̌
∂θ

→ 1 as θ̌ → θ

which follows from fact (i).
Next, we prove the theorem from the preceding four facts. The inequality

P
M
s,n
δ

θ {θ̂ /∈ Uθ,ε} � P
Mf×δn
θ {θ̂ ∈ Uθ,√ε} sup

θ̌∈Uθ,√ε
P
Lθ̌×(1−δ)n
θ {θ̂ /∈ Uθ,ε} + P

Mf×δn
θ {θ̂ /∈ Uθ,√ε}

(H.2)

holds. As proved in the latter, the inequality

lim inf
n→∞ − 1

n
log sup

θ̌∈Uθ,√ε
P
Lθ̌×(1−δ)n
θ

{
T n
θ̌
/∈ Uθ,ε

}

� (1 − δ)g


ε2(1 − δ2)

2 1

2

(
Trρθ

(
Lθ̌

Jθ̌
− TrρθLθ̌

Jθ̌

)2
)−1

,
ε2(1 − δ2)

2

2
δ




(H.3)

holds, where the function g(x, y) is defined as g(x, y) := x − log
(
1 + x

2 + y
)
. Therefore, we

have

β
(


Ms
δ, θ, ε

)
= lim inf

n→∞ − 1

n
log P

M
s,n
δ

θ {θ̂ /∈ Uθ,√ε}

� min


(1 − δ)g


ε2(1 − δ2)

2 1

2

(
Tr ρθ

(
Lθ̌

Jθ̌
− TrρθLθ̌

Jθ̌

)2
)−1

,
ε2(1 − δ2)

2

2
δ


 ,

cβ({Mf × δn}, θ,√ε)

 . (H.4)

From facts (i) and (ii), the equations

lim
ε→0

1

ε2
(rhs of (H.4))

= 1 − δ

2


 lim
θ̌→θ

(1 − δ1)
2(1 − δ2)

2

(
Tr ρθ

(
Lθ̌

Jθ̌
− TrρθLθ̌

Jθ̌

)2
)−1

− (1 − δ2)
2δ3




= 1 − δ

2
((1 − δ1)

2(1 − δ2)
2Jθ − (1 − δ2)

2δ3) (H.5)

hold. The rhs of (H.5) converges locally uniformly w.r.t. θ . Let β
m

( 
Ms
δ, θ, ε

)
be the rhs of

(H.4) in the case of δ2 = δ3 = 1
m

. Therefore, we have

lim
m→∞ lim

ε→0

1

ε2
β
m

( 
Ms
δ, θ, ε

) = 1 − δ

2
Jθ

which implies that

α
( 
Ms

δ, θ
)

� 1 − δ

2
Jθ .

If the converse inequality

α
( 
Ms

δ, θ
)

� 1 − δ

2
Jθ (H.6)
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holds, we can immediately derive relations (55) and show that the sequence of estimators 
Ms
δ

satisfies the second strong consistency condition.
In the following, relations (H.6) and (H.3) are proved. First, we prove (H.6). We can

evaluate the probability P
M
s,n
δ

θ {θ̂ ∈ Uθ,ε} as

− log P
M
s,n
δ

θ {θ̂ ∈ Uθ,ε} = − log
∫

P
Mf×δn
θ (dθ̌ )PLθ̌×(1−δ)n

θ

{
T n
θ̌
/∈ Uθ,ε

}
� −

∫
P
Mf×δn
θ (dθ̌ ) log

(
PLθ̌×(1−δ)n
θ

{
T n
θ̌
/∈ Uθ,ε

})
� −

∫
P
Mf×δn
θ (dθ̌ )

DLθ̌×(1−δ)n(θ + ξε‖θ) + h
(
PLθ̌θ+ξε,n

)
PLθ̌θ+ξε,n

where P
Lθ̌
θ+ξε,n := P

Lθ̌×(1−δ)n
θ+ξε,n {Tθ̌n /∈ Uθ,ε}, and similar to (35), we can prove the last inequality.

For any δ4 > 0, we have

lim sup
n→∞

− 1

n
log P


Ms
δ

θ {Tn /∈ Uθ,ε}

� lim sup
n→∞

∫
R

P
Mf×δn
θ (dθ̌ )(1 − δ) min

ξ=1−δ4,−(1−δ4)

(1 − δ)DLθ̌ (θ + ξε‖θ) +
h

(
P
L
θ̌
θ+ξε,n

)
n

(1 − δ)PLθ̌θ+ξε,n

= (1 − δ) min
ξ=1−δ4,−(1−δ4)

DLθ̌ (θ + ξε‖θ) = 1 − δ

2
Jθ .

The last equation is derived from Lebesgue’s convergence theorem and the fact that the
probability PLθ̌θ+ξε,n tends to 1 uniformly w.r.t. θ̌ , as follows from assumptions 1 and 3.

The reason for the applicability of Lebesgue’s convergence theorem is given as follows.
Since PLθ̌θ+ξε,n tends to 1 uniformly w.r.t. θ̌ , there exists N,R > 0 such that PLθ̌θ+ξε,n >

1
R
,

∀θ̌ ∈ �,n � N . Thus, we have

DLθ̌×(1−δ)n(θ + ξε‖θ) + h
(
PLθ̌θ+ξε,n

)
PLθ̌θ+ξε,n

� R

1 − δ
((1 − δ)D(θ + εξ‖θ) + 2) < ∞.

Therefore, we can apply Lebesgue’s convergence theorem. Thus, the relations

α
( 
Ms

δ, θ
) = lim sup

ε→0
lim sup
n→∞

− 1

nε2
log P


Ms
δ

θ {Tn /∈ Uθ,ε}

� (1 − δ) lim sup
ε→0

1

ε2
min

ξ=1−δ4,−(1−δ4)
DLθ̌ (θ + ξε‖θ)

= (1 − δ)(1 − δ4)
2 1

2Jθ

hold. Since δ4 > 0 is arbitrary, inequality (H.6) holds.
Next, we prove the inequality (H.3). Assume that |θ̌ − θ | � ε and define

�(ξ, θ̌ , θ) := sup
η∈R

(ηξ − logφθ,θ̌ (η)).

Then, the inequalities

P
Lθ̌×(1−δ)n
θ {θ̌ /∈ Uθ,ε} � P

Lθ̌×(1−δ)n
θ {|Trρθ̂Lθ̌ − Tr ρθLθ̌ | � (1 − δ2)ε} (H.7)

� 2 exp(−(1 − δ)nmin{�((1 − δ2)ε, θ̌ , θ),�(−(1 − δ2)ε, θ̌ , θ)}) (H.8)

hold, where (H.7) is derived from fact (iv), and (H.8) is derived from Markov’s inequality.
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Thus,

lim
n→∞ − 1

n
log sup

θ̌∈Uθ,√ε
PLθ̌×(1−δ)n
θ {θ̌ /∈ Uθ,ε}

� (1 − δ) inf
θ̌∈Uθ,√ε

min{�((1 − δ2)ε, θ̌ , θ),�(−(1 − δ2)ε, θ̌ , θ)}. (H.9)

We let ε > 0 be a sufficiently small real number for arbitrary δ3 > 0 and define η by

η := ε(1 − δ2)

(
Trρθ

(
Lθ̌

Jθ̌
− Tr ρθLθ̌

Jθ̌

)2
)−1

.

Then, the inequalities

�(±(1 − δ2)ε, θ̌ , θ) � ±(1 − δ2)ε(±η)− logφθ,θ̌ (±η)

� ε2(1 − δ)2

(
Tr ρθ

(
Lθ̌

Jθ̌
− TrρθLθ̌

Jθ̌

)2
)−1

− log


1 +

ε2(1 − δ)2

2


(Trρθ

(
Lθ̌

Jθ̌
− Tr ρθLθ̌

Jθ̌

)2
)−1

+ δ3




 (H.10)

hold, where (H.10) follows from fact (iii). The uniformity of (H.1) (fact (iii)) and the boundness
of the rhs of (H.1) (assumption 3) guarantee that the choice of ε > 0 is independent of θ, θ̌ .
From (H.9) and (H.10), we obtain (H.4) because the function x �→ g(x, y) where y, x � 0.

Appendix I. Proof of theorem 13

If the true state is ρθ1 , the inequalities

P
M
w,n
θ1

θ1
{Tn /∈ Uθ1,ε} � P

Mf×
√
n

θ1
{θ̌ /∈ Uθ1,ε} sup

θ̌ /∈Uθ1 ,ε
P
E
n−√

n

θ1
θ1

{
en(1−δn−

√
n)D(θ̌‖θ1)P

E
n−√

n

θ1
θ1

(ω) < P
E
n−√

n

θ1

θ̌
(ω)

}

� 1 × sup
θ̌ /∈Uθ1 ,ε

e−n(1−δn−√
n)D(θ̌‖θ1)

hold. Since (1 − δn−√
n) → 1, we have

lim
n→∞ − 1

n
log P

M
w,n
θ1

θ1
{Tn /∈ Uθ1,ε} = inf

θ̌ /∈Uθ1 ,ε
D(θ̌‖θ1).

Thus, equation (56) is proved. Then, it implies (57).
Next, we show the weak consistency of 
Mw

θ1
. Assume that the true state ρθ is not ρθ1 .

Then, we have

P
M
w,n
θ1

θ {Tn /∈ Uθ,εn} � P
Mf×√

n

θ {θ̌ /∈ Uθ,εn} + P
Mf×√

n

θ {θ̌ ∈ Uθ,εn }

× sup
θ̌∈Uθ,εn

P
E
n−√

n

θ1
θ

{
en(1−δn−√

n)D(θ̌‖θ1)P
E
n−√

n

θ1
θ1

(ω) � P
E
n−√

n

θ1

θ̌
(ω)

}
(I.1)

where εn := D(θ‖θ1)

2
∣∣Tr dρθ

dθ (log ρθ−log ρθ1 )
∣∣δn. Since δn = 1

n
1
5

, the convergence P
Mf×√

n

θ {θ̌ /∈ Uθ,εn} → 0

holds. Also, the relation Uθ,εn ⊂ Uθ,εn−√
n

holds. If we can prove

sup
θ̌∈Uθ,εn

P
Enθ1
θ

{
en(1−δn)D(θ̌‖θ1)P

Enθ1
θ1
(ω) � P

Enθ1

θ̌
(ω)
}

→ 0 (I.2)
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we obtain

P
M
w,n
θ1

θ {Tn /∈ Uθ,εn} → 0. (I.3)

This condition (I.3) is stronger than the weak consistency condition. Thus, it is sufficient to
show (I.2).

From lemma 14, the relations

P
Enθ1
θ

{
en(1−δn)D(θ̌‖θ1)P

Enθ1
θ1
(ω) � P

Enθ1

θ̌
(ω)
}

= P
Enθ1
θ

{
1

n

(
−log P

Enθ1

θ̌
(ω) + log P

Enθ1
θ1
(ω)
)

+D(θ̌‖θ1) � δnD(θ̌‖θ1)

}

= P
Enθ1
θ

{
1

n

(
−log P

Enθ1

θ̌
(ω) + log P

Enθ1
θ1
(ω)
)

+ Trρθ
(
logρθ̌ − logρθ1

)

� δnD(θ̌‖θ1) + Tr(ρθ − ρθ̌ )
(
logρθ̌ − logρθ1

)}

� P
Enθ1
θ

{
− 1

n
log P

Enθ1

θ̌
(ω) + Tr ρθ logρθ̌ � δnD(θ̌‖θ1) + Tr(ρθ − ρθ̌ )

× (logρθ̌ − logρθ1

) }
+ P

Enθ1
θ

{
1

n
log P

Enθ1
θ1
(ω)− Tr ρθ logρθ1 � δnD(θ̌‖θ1)

+ Tr(ρθ − ρθ̌ )
(
logρθ̌ − logρθ1

) }

� exp

[
−
(
n sup

0�t�1
(δnD(θ̌‖θ1)+ Tr(ρθ − ρθ̌ )

(
logρθ̌ − logρθ1

)− Tr ρθ logρθ̌ )t

− t
(k + 1) log(n + 1)

n
− log Trρθρ

−t
θ̌

)]
+ exp

[
−
(
n sup

0�t

(
δnD(θ̌‖θ1)

+ Tr(ρθ − ρθ̌ )
(
logρθ̌ − logρθ1

)
+ Trρθ logρθ1

)
t − log Trρθρtθ1

)]
(I.4)

hold. In the following, we assume that |θ − θ̌ | � εn. Since εn = D(θ‖θ1)

2
∣∣Tr dρθ

dθ (log ρθ−log ρθ1 )
∣∣δn, we

can derive δnD(θ̌‖θ1) + Tr(ρθ − ρθ̌ )(logρθ̌ − logρθ1) � 1
2D(θ‖θ1)δn + O

(
δ2
n

)
. Substituting

t = sδn, we have

sup
θ̌∈Uθ,εn

1

nδ2
n

(
n sup

0�t�1

(
δnD(θ̌‖θ1) + Tr(ρθ − ρθ̌ )

(
logρθ̌ − logρθ1

)− Tr ρθ logρθ̌
)
t

− t (k + 1) log(n + 1)

n
− log Trρθρ

−t
θ̌

)

� sup
θ̌∈Uθ,εn

1

δ2
n

((
1

2
D(θ‖θ1)δn +O

(
δ2
n

) − Trρθ logρθ̌

)
sδn − sδn (k + 1) log(n+ 1)

n

+ Tr ρθ logρθ̌ sδn − 1

2
(Trρθ (logρθ̌ )

2 − (Trρθ logρθ̌ )
2)s2δ2

n +O
(
δ3
n

))

� sup
θ̌∈Uθ,εn

1

δ2
n

(
1

2
D(θ‖θ1)sδ

2
n +O

(
δ3
n

)− sδn
(k + 1) log(n + 1)

n
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− 1

2
(Trρθ (logρθ̌ )

2 − (Tr ρθ logρθ̌ )
2)s2δ2

n +O
(
δ3
n

))

→ 1

2
D(θ‖θ1)s − 1

2
(Trρθ (logρθ )2 − (Trρθ logρθ )2)s2 (as n → ∞)

= − 1

2

(
Tr ρθ(logρθ )2 − (Trρθ logρθ )2

)
×
(
s − D(θ‖θ1)

2(Trρθ (logρθ )2 − (Trρθ logρθ )2)

)2

+
D(θ‖θ1)

2

8(Trρθ (logρθ )2 − (Trρθ logρθ)2)
.

Thus, we have

lim
n→∞ sup

θ̌∈Uθ,εn

1

nδ2
n

(
n sup

0�t�1

(
(δnD(θ̌‖θ1) + Tr(ρθ − ρθ̌ )(logρθ̌ − logρθ1)− Trρθ logρθ̌ )t

− t (k + 1) log(n + 1)

n
− log Trρθρ

−t
θ̌

))

� D(θ‖θ1)
2

8(Trρθ(logρθ )2 − (Trρθ logρθ )2)
> 0. (I.5)

Also, we obtain

sup
θ̌∈Uθ,εn

1

nδ2
n

(
n sup

0�t

((
δnD(θ̌‖θ1) + Tr(ρθ − ρθ̌ )

(
logρθ̌ − logρθ1

)
+ Tr ρθ logρθ1

)
t

− log Tr ρθρtθ1

))

� sup
θ̌∈Uθ,εn

1

δ2
n

((
1

2
D(θ‖θ1)δn +O

(
δ2
n

)
+ Tr ρθ logρθ1

)
sδn − Trρθ logρθ1sδn

− 1

2

(
Trρθ

(
logρθ1

)2 − (Trρθ logρθ1

)2)
s2δ2

n +O
(
δ3
n

))

= sup
θ̌∈Uθ,εn

1

δ2
n

((
1

2
D(θ‖θ1)s − 1

2

(
Trρθ (logρθ1)

2 − (Tr ρθ logρθ1

)2)
s2

)
δ2
n

+O
(
δ3
n

))

→ 1

2
D(θ‖θ1)s − 1

2

(
Tr ρθ

(
logρθ1

)2 − (Tr ρθ logρθ1

)2)
s2 (as n → ∞).

Therefore,

lim
n→∞ sup

θ̌∈Uθ,εn

1

nδ2
n

(
n sup

0�t

((
δnD(θ̌‖θ1) + Tr(ρθ − ρθ̌ )

(
logρθ̌ − logρθ1

)
+ Trρθ logρθ1

)
t

− log Tr ρθρtθ1

))
� D(θ‖θ1)

2

8(Trρθ (logρθ1)
2 − (Tr ρθ logρθ1)

2)
> 0. (I.6)

Since nδ2
n → ∞, relation (I.2) follows from (I.4)–(I.6).
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Appendix J. Pinching map and group-theoretical viewpoint

J.1. Pinching map in non-asymptotic setting

In the following, we prove lemma 14 and construct the PVM Enθ after some discussions
concerning the pinching map in the non-asymptotic setting and group representation theory.
In this subsection, we present some definitions and discussions of the non-asymptotic setting.

A state ρ is called commutative with a PVME(= {Ei}) onH if ρEi = Eiρ for any index i.
For PVMs E(= {Ei}i∈I ), F (= {Fj }j∈J ), the notation E � F means that for any index i ∈ I
there exists a subset (F/E)i of the index set J such that Ei = ∑

j∈(F/E)i Fj . For a state ρ,
we denote by E(ρ) the spectral measure of ρ which can be regarded as a PVM. The pinching
map EE with respect to a PVM E is defined as

EE : ρ �→
∑
i

EiρEi (J.1)

which is an affine map from the set of states to itself. Note that the state EE(ρ) is commutative
with a PVM E. If a PVM F = {Fj }j∈J is commutative with a PVM E = {Ei}i∈I , we can
define the PVM F × E = {FjEi}(i,j)∈I×J , which satisfies F × E � E and F × E � F . For
any PVM E, the supremum of the dimension of Ei is denoted by w(E).

Lemma 22. Let E be a PVM such that w(E) < ∞. If states σ and ρ are commutative with
the PVM E, and if a PVM F satisfies E � F,E(σ) � F , then we have

D(ρ‖σ)− logw(E) � D(EF (ρ)‖EF (σ )) � D(ρ‖σ).

This lemma follows from lemmas 23 and 24 below.

Lemma 23. Let ρ and σ be states. If a PVM F satisfies E(σ) � F , then

D(ρ‖σ) = D(EF (ρ)‖EF (σ )) +D(ρ‖EF (ρ)). (J.2)

Proof. Since E(σ) � F and F is commutative with σ , we have Tr EF (ρ) log EF (σ ) =
Trρ log σ . Since ρ is commutative with log ρ, we have Tr EF (ρ) logρ = Tr ρ logρ.
Therefore, we obtain the following:

D(EF (ρ)‖EF (σ ))−D(ρ‖σ) = Tr EF (ρ)(log EF (ρ)− log EF (σ ))− Tr ρ(logρ − log σ)

= Tr EF (ρ)(log EF (ρ)− logρ).

This proves (J.2). �

Lemma 24. Let E and F be PVMs such thatE � F . If a state ρ is commutative with E, we have

D(ρ‖EF (ρ)) � logw(E). (J.3)

Proof. Let ai := TrEiρEi and ρi := 1
ai
EiρEi . Then, we have ρ = ∑

i aiρi , EF (ρ) =∑
i aiEF (ρi),

∑
i ai = 1. Therefore,

D(ρ‖EF (ρ)) =
∑
i

TrEiρ(logρ − log EF (ρ))

=
∑
i

TrEiρEi(Ei logρEi − Ei log EF (ρ)Ei)

=
∑
i

aiD(ρi‖EF (ρi)) � sup
i

D(ρi‖EF (ρi))

= sup
i

(Tr ρi logρi − Tr EF (ρi) log EF (ρi))
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� − sup
i

Tr EF (ρi) log EF (ρi) � sup
i

log dimEi = logw(E).

Thus, we obtain inequality (J.3). �

Let us consider another type of inequality.

Lemma 25. Let E be a PVM such that w(E) < ∞. If the state ρ is commutative with E, and
if a PVM M satisfies that M � E, we have

ρ � EM(ρ)w(E) (J.4)

ρ−t � EM(ρ)−tw(E)−t (J.5)

for 1 � t � 0.

Proof. It is sufficient for (J.4) to show

ρ � kEM(ρ) (J.6)

for any state ρ and any PVM M on a k-dimensional Hilbert space H. Now, it is sufficient to
prove (J.6) in the pure state case. For any φ,ψ ∈ H, we have

〈ψ|kEM(|φ〉〈φ|)− |φ〉〈φ||ψ〉 = k

k∑
i=1

〈ψ|Mi |φ〉〈φ|Mi |ψ〉 −
∣∣∣∣∣
k∑
i=1

〈ψ|Mi |φ〉
∣∣∣∣∣
2

� 0.

The last inequality follows from Schwartz inequality for vectors {〈ψ|Mi |φ〉}ki=1 and {1}ki=1. It
is well known that the function u �→ −u−t (0 � t � 1) is an operator monotone function [40].
Thus, (J.4) implies (J.5).

Lemma 26. If a PVM M is commutative with a state σ and w(M) = 1, we have

PMρ
{
log PMσ (ω) � a

}
� exp

(
− sup

0�t
(at − log Tr ρσ t )

)
(J.7)

for any state ρ.

Proof. From Markov’s inequality, we have

p {X � a} � exp −�t(X, p, a) �t (X, p, a) := at − log
∫

etX(ω)p(dω). (J.8)

Since w(M) = 1, the relation
∑

ω PMρ (ω)P
M
σ (ω)

t = Tr EM(ρ)EM(σ)t holds. It yields

�t

(
log PMσ ,PMρ , a

) = at − log Tr EM(ρ)EM(σ)t = at − log Trρσ t .

Thus, we obtain (J.7). �

Lemma 27. Assume that E and M are PVMs such that w(E) < ∞, w(M) = 1 and M � E.
If the states ρ and ρ ′ are commutative with E, we have

PMρ
{−log PMρ′ (ω) � a

}
� exp

(
− sup

0�t�1
((a − logw(E))t − log Tr ρρ ′−t )

)
. (J.9)

Proof. If 0 � t � 1, we have

�t

(−log PMρ′ ,PMρ , a
) = at − log Tr EM(ρ)EM(ρ ′)−t = at − log TrρEM(ρ ′)−t

� at − logw(E)t Tr ρρ ′−t (J.10)

� (a − logw(E))t − log Trρρ ′−t (J.11)

where (J.10) follows from lemma 25. Therefore, from (J.8) and (J.11), we obtain (J.9). �
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J.2. Group representation and its irreducible decomposition

In this subsection, we consider the relation between irreducible representations and PVMs
for the purpose of constructing the PVM Enθ and a proof of lemma 14. Let V be a finite-
dimensional vector space over the complex numbers C. A map π from a group G to the
generalized linear group of a vector space V is called a representation on V if the map π
is homomorphic, i.e. π(g1)π(g2) = π(g1g2),∀g1, g2 ∈ G. The subspace W of V is called
invariant with respect to a representation π if the vector π(g)w belongs to the subspace W
for any vector w ∈ W and any element g ∈ G. The representation π is called irreducible
if there is no proper nonzero invariant subspace of V with respect to π . Let π1 and π2 be
representations of a group G on V1 and V2, respectively. The tensored representation π1 ⊗ π2

of G on V1 ⊗V2 is defined as (π1 ⊗π2)(g) = π1(g)⊗π2(g), and the direct sum representation
π1 ⊕ π2 of G on V1 ⊕ V2 is also defined as (π1 ⊕ π2)(g) = π1(g)⊕ π2(g).

In the following, we treat a representation π of a group G on a finite-dimensional Hilbert
space H. The following fact is crucial in later arguments. There exists an irreducible
decomposition H = H1 ⊕ · · · ⊕ Hl such that the irreducible components are orthogonal
to one another if for any element g ∈ G there exists an element g∗ ∈ G such that
π(g)∗ = π(g∗), where π(g)∗ denotes the adjoint of the linear map π(g). We can regard the
irreducible decomposition H = H1 ⊕ · · · ⊕ Hl as the PVM

{
PHi

}l
i=1, where PHi

denotes the
projection to Hi . If two representationsπ1 and π2 satisfy the preceding condition, the tensored
representation π1 ⊗ π2 also satisfies it. Note that in general, an irreducible decomposition of
a representation satisfying the preceding condition is not unique. In other words, we cannot
uniquely define the PVM from such a representation.

J.3. Construction of PVM Enθ and the tensored representation

In this subsection, we construct the PVMEnθ after the discussion of the tensored representation.
Let the dimension of the Hilbert space H be k. Concerning the natural representation
πSL(H) of the special linear group SL(H) on H, we consider its nth tensored representation
π⊗n

SL(H) := πSL(H) ⊗ · · · ⊗ πSL(H)︸ ︷︷ ︸
n

on the tensored space H⊗n. For any element g ∈ SL(H), the

relation πSL(H)(g)∗ = πSL(H)(g∗) holds where the element g∗ ∈ SL(H) denotes the adjoint
matrix of the matrix g. Consequently, there exists an irreducible decomposition of π⊗n

SL(H)
regarded as a PVM and we denote the set of such PVMs by Ir⊗n.

From Weyl’s dimension formula ((7.1.8) or (7.1.17) in Weyl [41] and Goodman and
Wallach [42]), the nth symmetric tensored space is the maximum-dimensional space in the
irreducible subspaces with respect to the nth tensored representation π⊗n

SL(H). Its dimension

equals the repeated combination kHn evaluated by kHn = (
n+k−1
k−1

) = (
n+k−1
n

) = n+1Hk−1 �
(n + 1)k−1. Thus, any element En ∈ Ir⊗n satisfies

w(En) � (n + 1)k−1. (J.12)

Lemma 28. A PVM En ∈ Ir⊗n is commutative with the nth tensored state ρ⊗n of any state ρ
on H.

Proof. If detρ �= 0, this lemma is trivial based on the fact that det(ρ)−1ρ ∈ SL(H). If
detρ = 0, there exists a sequence {ρi}∞i=1 such that det ρi �= 0 and ρi → ρ as i → ∞. We
have ρ⊗n

i → ρ⊗n as i → ∞. Because a PVM En ∈ Ir⊗n is commutative with ρ⊗n
i , it is also

commutative with ρ⊗n. �
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Definition 29. We can define the PVMEn ×E(ρ⊗n) for any PVMEn ∈ Ir⊗n. Now we define
the PVM Enθ satisfying w

(
Enθ
) = 1, Enθ � En ×E

(
ρ⊗n
θ

)
for a PVM En ∈ Ir⊗n. Note that the

Enθ is not unique.

Proof of lemma 14. From lemmas 26 and 27, (J.12) and the definition of Enθ , we obtain
lemma 14. �

Proof of lemma 19. From lemma 22, (J.12) and the definition of Enθ , we obtain lemma 19.
�

Appendix K. Large deviation theory for an exponential family

In this section, we summarize the large deviation theory for an exponential family. A
d-dimensional probability family is called an exponential family if there exist linearly
independent real-valued random variables F1, . . . , Fd and a probability distribution p on
the probability space � such that the family consists of the probability distribution

pθ(dω) := exp

(
d∑
i=1

θ iFi(ω)− ψ(θ)

)
p(dω)

ψ(θ) := log
∫
�

exp

(
d∑
i=1

θ iFi(ω)

)
p(dω).

In this family, the parametric space is given by� := {θ ∈ R
d |0,< ψ(θ) < ∞}, the parameter

θ is called the natural parameter and the function ψ(θ) is called the potential. We define the
dual potential φ(θ) and the dual parameter η(θ), called the expectation parameter, as

ηi(θ) := ∂ψ(θ)

∂θ i
= log

∫
�

Fi(ω)pθ (dω) φ(θ) := max
θ ′

(
d∑
i=1

θ ′iηi(θ)− ψ(θ ′)

)
.

From (K.1), we have

φ(θ) =
d∑
i=1

θ iηi(θ)− ψ(θ).

In this family, the sufficient statistics are given by F1(ω), . . . , Fd(ω). The MLE θ̂ (ω) is given
by ηi(θ̂ (ω)) = Fi(ω). The KL divergenceD(θ‖θ0) := D

(
pθ
∥∥pθ0

)
is calculated by

D(θ‖θ0) =
∫
�

log
pθ (ω)

pθ0(ω)
pθ(dω) =

∫
�

∑
i

(
θ i − θ i0

)
Fi(ω) + ψ(θ0)− ψ(θ)pθ (dω)

=
∑
i

(
θ i − θ i0

)
ηi(ω) + ψ(θ0)− ψ(θ) = φ(θ) + ψ(θ0)−

∑
i

θ i0ηi(ω)

= max
θ ′

(∑
i

θ ′iηi(θ)− ψ(θ ′)

)
+ ψ(θ0)−

∑
i

θ i0ηi(θ)

= max
θ ′

∑
i

(θ ′i − θ ′i0)ηi(θ)− log
∫
�

exp

(∑
i

(
θ i − θ i0

)
Fi(ω)

)
pθ (dω).

Next, we discuss the n-i.i.d. extension of the family {pθ |θ ∈ �}. For the data

ωn := (ω1, . . . , ωn) ∈ �n, the probability distribution pnθ ( 
ωn) := pθ (ω1) · · ·pθ (ωn) is



7726 M Hayashi

given by

pnθ ( 
ωn) = exp

(
n
∑
i

θ iFn,i( 
ωn)− nψ(θ)

)
pn(d 
ωn)

pn(d 
ωn) := p(dω1) · · ·p(dωn)

Fn,i( 
ωn) := 1

n

n∑
k=1

Fi(ωk).

Since the expectation parameter of the probability family
{
pnθ

∣∣θ ∈ �} is given by nηi(θ), the
MLE θ̂n( 
ωn) is given by

nηi(θ̂n( 
ωn)) = nFn,i( 
ωn). (K.1)

Applying Cramér’s theorem [36] to the random variables F1, . . . , Fd and the distribution pθ0 ,
for any subset S ⊂ R

d we have

inf
η∈S

sup
θ ′∈R

d

(∑
i

θ ′i (ηi − Eθ0(Fi)
)− ψθ0(θ

′)

)
� lim

n→∞
−1

n
logpnθ0

{ 
Fn ∈ S}

� inf
η∈intS

sup
θ ′∈R

d

(∑
i

θ ′i (ηi − Eθ0(Fi)
)− ψθ0(θ

′)

)

where

Eθ0(Fi) :=
∫
�

Fi(ω)pθ (dω)

ψθ0(θ) :=
∫
�

exp

(∑
i

θ iFi(ω)

)
pθ(dω)


Fn( 
ωn) := (Fn,1( 
ωn), . . . , Fn,d ( 
ωn))
and int S denotes the interior of S, which is consistent with (Sc)c. Since

sup
θ ′∈R

d

(∑
i

θ ′i (ηi − Eθ0(Fi)
)− ψθ0(θ

′)

)

= sup
θ ′∈R

d

(∑
i

θ ′i (ηi − ηi(θ0))− ψ(θ ′)

)
+ ψ(θ0) = D(θ‖θ0)

and the map θ �→ D(θ‖θ0) is continuous, it follows from (K.1) that

lim
n→∞

−1

n
logpnθ0

{θ̂ n ∈ �′} = inf
θ∈�′

D(θ‖θ0)

for any subset �′ ⊂ �, which is equivalent to (76). Conversely, if an estimator {Tn( 
ωn)}
satisfies the weak consistency

lim
n→∞p

n
θ {‖Tn( 
ωn)− θ‖ > ε} → 0 ∀ε > 0 ∀θ ∈ �

then, similar to (33), we can prove

lim
n→∞

−1

n
logpnθ0

{Tn( 
ωn) ∈ �′} � inf
θ∈�′

D(θ‖θ0).

Therefore, we can conclude that the MLE is optimal in the large deviation sense for exponential
families.
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